Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

First-principles-based multiscale modelling of heterogeneous catalysis

Abstract

First-principles-based multiscale models are ever more successful in addressing the wide range of length and time scales over which material–function relationships evolve in heterogeneous catalysis. They provide invaluable mechanistic insight and allow screening of vast materials spaces for promising new catalysts — in silico and at predictive quality. Here, we briefly review methodological cornerstones of existing approaches and highlight successes and ongoing developments. The biggest challenge is to overcome presently largely static couplings between the descriptions at the various scales to adequately treat the dynamic and adaptive nature of working catalysts. On the road towards a higher structural, mechanistic and environmental complexity, it is, in particular, the fusion with machine learning methodology that promises rapid advances in the years to come.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Different levels in a multiscale modelling framework from electrons to a reactor, or electrochemical cell.
Fig. 2: Present routes to establish a reaction network in 1pMK models.
Fig. 3: Pioneering work on sensitivity analysis identifying the error propagation in 1pMK models.
Fig. 4: 1pMK models for thermal and electrocatalysis on extended surfaces of a metal and an oxide.
Fig. 5: Machine-learning guided search of active sites for CO2 electroreduction catalysis.
Fig. 6: 1pMK models for thermal catalysis accounting for the structural complexity of metal nanoparticles.
Fig. 7: 1pMK models describing transitions from and to surface oxide phases on transition metal surfaces.
Fig. 8: Multiscale modelling of an operating catalytic reactor.

References

  1. 1.

    Kalz, K. F. et al. Future challenges in heterogeneous catalysis: understanding catalysts under dynamic reaction conditions. ChemCatChem 9, 17–29 (2017).

    CAS  PubMed  Google Scholar 

  2. 2.

    Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).

    PubMed  Google Scholar 

  3. 3.

    Sutton, J. E. & Vlachos, D. G. Building large microkinetic models with first-principles’ accuracy at reduced computational cost. Chem. Eng. Sci. 121, 190–199 (2015).

    CAS  Google Scholar 

  4. 4.

    Reuter, K. Ab initio thermodynamics and first-principles microkinetics for surface catalysis. Catal. Lett. 146, 541–563 (2016).

    CAS  Google Scholar 

  5. 5.

    Nørskov, J. K., Studt, F., Abild-Pedersen, F. & Bligaard, T. Fundamental Concepts in Heterogeneous Catalysis (Wiley, 2014).

  6. 6.

    Andersen, M., Panosetti, C. & Reuter, K. A practical guide to surface kinetic monte carlo simulations. Front. Chem. 7, 202 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Reuter, K., Frenkel, D. & Scheffler, M. The steady state of heterogeneous catalysis, studied by first-principles statistical mechanics. Phys. Rev. Lett. 93, 116105 (2004). One of the first couplings of first-principles calculations with kinetic Monte Carlo models that explored the steady state of CO oxidation on RuO 2 (110) and provided valuable mechanistic insight.

    PubMed  Google Scholar 

  8. 8.

    Gokhale, A. A., Dumesic, J. A. & Mavrikakis, M. On the mechanism of low-temperature water gas shift reaction on copper. J. Am. Chem. Soc. 130, 1402–1414 (2008).

    CAS  PubMed  Google Scholar 

  9. 9.

    Honkala, K. et al. Ammonia synthesis from first-principles calculations. Science 307, 555–558 (2005).

    CAS  PubMed  Google Scholar 

  10. 10.

    Inderwildi, O. R., Jenkins, S. J. & King, D. A. An unexpected pathway for the catalytic oxidation of methylidyne on Rh(111) as a route to syngas. J. Am. Chem. Soc. 129, 1751–1759 (2007).

    CAS  PubMed  Google Scholar 

  11. 11.

    Saeys, M., Reyniers, M. F., Neurock, M. & Marin, G. B. Ab initio reaction path analysis of benzene hydrogenation to cyclohexane on Pt(111). J. Phys. Chem. B 109, 2064–2073 (2005).

    CAS  PubMed  Google Scholar 

  12. 12.

    Filot, I. A. W., Van Santen, R. A. & Hensen, E. J. M. The optimally performing Fischer–Tropsch catalyst. Angew. Chem. Int. Ed. 53, 12746–12750 (2014).

    CAS  Google Scholar 

  13. 13.

    Greeley, J. Theoretical heterogeneous catalysis : scaling relationships and computational catalyst design. Annu. Rev. Chem. Biomol. Eng. 7, 605–635 (2016).

    PubMed  Google Scholar 

  14. 14.

    Vlachos, D. G. Multiscale integration hybrid algorithms for homogeneous–heterogeneous reactors. AIChE J. 43, 3031–3041 (1997).

    CAS  Google Scholar 

  15. 15.

    Deutschmann, O. (ed.) Modeling and Simulation of Heterogeneous Catalytic Reactions (Wiley, 2012).

  16. 16.

    Maestri, M. & Cuoci, A. Coupling CFD with detailed microkinetic modeling in heterogeneous catalysis. Chem. Eng. Sci. 96, 106–117 (2013).

    CAS  Google Scholar 

  17. 17.

    Matera, S. & Reuter, K. First-principles approach to heat and mass transfer effects in model catalyst studies. Catal. Lett. 133, 156–159 (2009).

    CAS  Google Scholar 

  18. 18.

    Matera, S. & Reuter, K. Transport limitations and bistability for in situ CO oxidation at RuO2(110): First-principles based multiscale modeling. Phys. Rev. B Condens. Matter Mater. Phys. 82, 085446 (2010).

    Google Scholar 

  19. 19.

    Matera, S., Maestri, M., Cuoci, A. & Reuter, K. Predictive-quality surface reaction chemistry in real reactor models: Integrating first-principles kinetic Monte Carlo simulations into computational fluid dynamics. ACS Catal. 4, 4081–4092 (2014).

    CAS  Google Scholar 

  20. 20.

    Matera, S. et al. Evidence for the active phase of heterogeneous catalysts through in situ reaction product imaging and multiscale modelling. ACS Catal. 5, 4514–4518 (2015). Multiscale modelling of an operating reactor coupled first-principle-based microkinetic models with computational fluid dynamics, allowing the identification of the active phase of a transition metal catalyst.

    CAS  Google Scholar 

  21. 21.

    Grajciar, L. et al. Towards operando computational modeling in heterogeneous catalysis. Chem. Soc. Rev. 47, 8307–8348 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Sabbe, M. K., Reyniers, M.-F. & Reuter, K. First-principles kinetic modeling in heterogeneous catalysis: an industrial perspective on best-practice, gaps and needs. Catal. Sci. Technol. 2, 2010–2024 (2012).

    CAS  Google Scholar 

  23. 23.

    Reuter, K. Modeling Heterogeneous Catalytic Reactions: From the Molecular Process to the Technical System (ed. Deutschmann, O.) 71–111 (Wiley, 2011).

  24. 24.

    Stamatakis, M. Kinetic modelling of heterogeneous catalytic systems. J. Phys. Condens. Matter 27, 013001 (2015).

    PubMed  Google Scholar 

  25. 25.

    Voter, A. F. in Radiation Effects in Solids (eds Sickafus, K. E., Kotomin, E. A. & Uberuaga, B. P.) 1–23 (Springer Netherlands, 2007).

  26. 26.

    Schlögl, R., Strasser, P., Reier, T., Nong, H. N. & Teschner, D. Electrocatalytic oxygen evolution reaction in acidic environments — reaction mechanisms and catalysts. Adv. Energy Mater. 7, 1601275 (2016).

    Google Scholar 

  27. 27.

    Ulissi, Z. W., Medford, A. J., Bligaard, T. & Nørskov, J. K. To address surface reaction network complexity using scaling relations machine learning and DFT calculations. Nat. Commun. 8, 14621 (2017).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Li, Q., García-Muelas, R. & López, N. Microkinetics of alcohol reforming for H2 production from a FAIR density functional theory database. Nat. Commun. 9, 526 (2018). An extensive first-principles-based microkinetic study of alcohol reforming on various transition metals exploring complex reaction networks and generating a valuable open, accessible, interoperable and reusable (FAIR) database.

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Goldsmith, C. F. & West, R. H. Automatic generation of microkinetic mechanisms for heterogeneous catalysis. J. Phys. Chem. C 121, 9970–9981 (2017).

    CAS  Google Scholar 

  30. 30.

    Margraf, J. T. & Reuter, K. Systematic enumeration of elementary reaction steps in surface catalysis. ACS Omega 4, 3370–3379 (2019). A method was developed to systematically enumerate all possible elementary reaction steps for a given number of atoms, enabling the automatic generation of complete reaction networks.

    CAS  Google Scholar 

  31. 31.

    Oberhofer, H. in Handbook of Materials Modeling 1–33 (Springer International Publishing, 2018).

  32. 32.

    Voter, A. F., Montalenti, F. & Germann, T. C. Extending the time scale in atomistic simulation of materials. Annu. Rev. Mater. Res. 32, 321–346 (2002).

    CAS  Google Scholar 

  33. 33.

    Foppa, L., Iannuzzi, M., Copéret, C. & Comas-Vives, A. Adlayer dynamics drives CO activation in Ru-catalyzed Fischer–Tropsch synthesis. ACS Catal. 8, 6983–6992 (2018). Meta-dynamics simulations were used to sample the activation mechanisms of CO oxidation in Ru-catalysed FischerTropsch synthesis, revealing the key role of step-edges and surface hydrogen.

    CAS  Google Scholar 

  34. 34.

    Kiss, J., Frenzel, J., Nair, N. N., Meyer, B. & Marx, D. Methanol synthesis on ZnO(0001). III. Free energy landscapes, reaction pathways, and mechanistic insights. J. Chem. Phys. 134, 064710 (2011).

    PubMed  Google Scholar 

  35. 35.

    Henkelman, G. & Jónsson, H. Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table. J. Chem. Phys. 115, 9657–9666 (2001).

    CAS  Google Scholar 

  36. 36.

    Chill, S. T. & Henkelman, G. Molecular dynamics saddle search adaptive kinetic Monte Carlo. J. Chem. Phys. 140, 214110 (2014).

    PubMed  Google Scholar 

  37. 37.

    Xu, L., Mei, D. & Henkelman, G. Adaptive kinetic Monte Carlo simulation of methanol decomposition on Cu(100). J. Chem. Phys. 131, 244520 (2009).

    PubMed  Google Scholar 

  38. 38.

    Rupp, M., von Lilienfeld, O. A. & Burke, K. Guest editorial: special topic on data-enabled theoretical chemistry. J. Chem. Phys. 148, 241401 (2018).

    PubMed  Google Scholar 

  39. 39.

    Behler, J. Perspective: machine learning potentials for atomistic simulations. J. Chem. Phys. 145, 170901 (2016).

    PubMed  Google Scholar 

  40. 40.

    Kitchin, J. R. Machine learning in catalysis. Nat. Catal. 1, 230–232 (2018).

    Google Scholar 

  41. 41.

    Medford, A. J., Kunz, M. R., Ewing, S. M., Borders, T. & Fushimi, R. Extracting knowledge from data through catalysis informatics. ACS Catal. 8, 7403–7429 (2018).

    CAS  Google Scholar 

  42. 42.

    Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Google Scholar 

  43. 43.

    Bo, C., Maseras, F. & López, N. The role of computational results databases in accelerating the discovery of catalysts. Nat. Catal. 1, 809–810 (2018).

    Google Scholar 

  44. 44.

    Winther, K. T. et al. Catalysis-Hub.org, an open electronic structure database for surface reactions. Sci. Data 6, 75 (2019).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Zhang, Y. & Ling, C. A strategy to apply machine learning to small datasets in materials science. npj Comput. Mater. 4, 25 (2018).

    CAS  Google Scholar 

  46. 46.

    Chen, J., Li, Y. F., Sit, P. & Selloni, A. Chemical dynamics of the first proton-coupled electron transfer of water oxidation on TiO2 anatase. J. Am. Chem. Soc. 135, 18774–18777 (2013).

    CAS  PubMed  Google Scholar 

  47. 47.

    Quaranta, V., Hellström, M. & Behler, J. Proton-transfer mechanisms at the water-ZnO interface: the role of presolvation. J. Phys. Chem. Lett. 8, 1476–1483 (2017).

    CAS  PubMed  Google Scholar 

  48. 48.

    Stecher, T., Reuter, K. & Oberhofer, H. First-principles free-energy barriers for photoelectrochemical surface reactions: proton abstraction at TiO2(110). Phys. Rev. Lett. 117, 1–6 (2016).

    Google Scholar 

  49. 49.

    Kristoffersen, H. H., Vegge, T. & Hansen, H. A. OH formation and H2 adsorption at the liquid water–Pt(111) interface. Chem. Sci. 9, 6912–6921 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Sprowl, L. H., Campbell, C. T. & Árnadóttir, L. Hindered translator and hindered rotor models for adsorbates: partition functions and entropies. J. Phys. Chem. C 120, 9719–9731 (2016).

    CAS  Google Scholar 

  51. 51.

    Campbell, C. T., Sprowl, L. H. & Árnadóttir, L. Equilibrium constants and rate constants for adsorbates: two-dimensional (2D) ideal gas, 2D ideal lattice gas, and ideal hindered translator models. J. Phys. Chem. C 120, 10283–10297 (2016).

    CAS  Google Scholar 

  52. 52.

    Piccini, G. & Sauer, J. Effect of anharmonicity on adsorption thermodynamics. J. Chem. Theory Comput. 10, 2479–2487 (2014).

    CAS  PubMed  Google Scholar 

  53. 53.

    Piccini, G., Alessio, M. & Sauer, J. Ab-initio calculation of rate constants for molecule-surface reactions with chemical accuracy. Angew. Chem. Int. Ed. 55, 5235–5237 (2016).

    CAS  Google Scholar 

  54. 54.

    Groβ, A. in Handbook of Materials Modeling 1–34 (Springer International Publishing, 2018).

  55. 55.

    Pinto, L. M. C., Quaino, P., Arce, M. D., Santos, E. & Schmickler, W. Electrochemical adsorption of OH on Pt(111) in alkaline solutions: combining DFT and molecular dynamics. ChemPhysChem 15, 2003–2009 (2014).

    CAS  PubMed  Google Scholar 

  56. 56.

    Ribeiro, R. F., Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Use of solution-phase vibrational frequencies in continuum models for the free energy of solvation. J. Phys. Chem. B 115, 14556–14562 (2011).

    CAS  PubMed  Google Scholar 

  57. 57.

    Hoffmann, M. J., Medford, A. J. & Bligaard, T. Framework for scalable adsorbate-adsorbate interaction models. J. Phys. Chem. C 120, 13087–13094 (2016).

    CAS  Google Scholar 

  58. 58.

    Wu, C., Schmidt, D. J., Wolverton, C. & Schneider, W. F. Accurate coverage-dependence incorporated into first-principles kinetic models: catalytic NO oxidation on Pt (1 1 1). J. Catal. 286, 88–94 (2012).

    CAS  Google Scholar 

  59. 59.

    Christensen, R., Hansen, H. A. & Vegge, T. Identifying systematic DFT errors in catalytic reactions. Catal. Sci. Technol. 5, 4946–4949 (2015).

    CAS  Google Scholar 

  60. 60.

    Reichenbach, T. et al. Ab initio study of CO2 hydrogenation mechanisms on inverse ZnO/Cu catalysts. J. Catal. 360, 168–174 (2018).

    CAS  Google Scholar 

  61. 61.

    Capdevila-Cortada, M., Łodziana, Z. & López, N. Performance of DFT+U approaches in the study of catalytic materials. ACS Catal. 6, 8370–8379 (2016).

    CAS  Google Scholar 

  62. 62.

    Sun, H. et al. Comparing quasiparticle H2O level alignment on anatase and rutile TiO2. ACS Catal. 5, 4242–4254 (2015).

    CAS  Google Scholar 

  63. 63.

    Sutton, J. E., Guo, W., Katsoulakis, M. A. & Vlachos, D. G. Effects of correlated parameters and uncertainty in electronic-structure-based chemical kinetic modelling. Nat. Chem. 8, 331–337 (2016).

    CAS  PubMed  Google Scholar 

  64. 64.

    Campbell, C. T. The degree of rate control: a powerful tool for catalysis research. ACS Catal. 7, 2770–2779 (2017).

    CAS  Google Scholar 

  65. 65.

    Döpking, S. et al. Addressing global uncertainty and sensitivity in first-principles based microkinetic models by an adaptive sparse grid approach. J. Chem. Phys. 148, 034102 (2018).

    PubMed  Google Scholar 

  66. 66.

    Reuter, K., Plaisance, C. P., Oberhofer, H. & Andersen, M. Perspective: on the active site model in computational catalyst screening. J. Chem. Phys. 146, 040901 (2017).

    PubMed  Google Scholar 

  67. 67.

    Stamatakis, M., Chen, Y. & Vlachos, D. G. First-principles-based kinetic Monte Carlo simulation of the structure sensitivity of the water–gas shift reaction on platinum surfaces. J. Phys. Chem. C 115, 24750–24762 (2011).

    CAS  Google Scholar 

  68. 68.

    Fang, Y. & Liu, Z. Mechanism and tafel lines of electro-oxidation of water to oxygen on RuO2(110). J. Am. Chem. Soc. 2, 18214–18222 (2010).

    Google Scholar 

  69. 69.

    Ma, X., Li, Z., Achenie, L. E. K. & Xin, H. Machine-learning-augmented chemisorption model for CO2 electroreduction catalyst screening. J. Phys. Chem. Lett. 6, 3528–3533 (2015).

    CAS  PubMed  Google Scholar 

  70. 70.

    Jinnouchi, R. & Asahi, R. Predicting catalytic activity of nanoparticles by a DFT-aided machine-learning algorithm. J. Phys. Chem. Lett. 8, 4279–4283 (2017).

    CAS  PubMed  Google Scholar 

  71. 71.

    Li, Z., Wang, S., Chin, W. S., Achenie, L. E. & Xin, H. High-throughput screening of bimetallic catalysts enabled by machine learning. J. Mater. Chem. A 5, 24131–24138 (2017).

    CAS  Google Scholar 

  72. 72.

    Ulissi, Z. W. et al. Machine-learning methods enable exhaustive searches for active Bimetallic facets and reveal active site motifs for CO2 reduction. ACS Catal. 7, 6600–6608 (2017).

    CAS  Google Scholar 

  73. 73.

    Gasper, R., Shi, H. & Ramasubramaniam, A. Adsorption of CO on low-energy, low-symmetry Pt nanoparticles: energy decomposition analysis and prediction via machine-learning models. J. Phys. Chem. C 121, 5612–5619 (2017).

    CAS  Google Scholar 

  74. 74.

    Mathew, K. et al. Atomate: a high-level interface to generate, execute, and analyze computational materials science workflows. Comput. Mater. Sci. 139, 140–152 (2017).

    Google Scholar 

  75. 75.

    Andersen, M., Levchenko, S. V., Scheffler, M. & Reuter, K. Beyond scaling relations for the description of catalytic materials. ACS Catal. 9, 2752–2759 (2019). A compressed sensing model was trained to predict adsorption energies, improving the accuracy of linear scaling relations and allowing screening for active bimetallic alloys at low computational cost.

    CAS  Google Scholar 

  76. 76.

    Tran, K. & Ulissi, Z. W. Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nat. Catal. 1, 696–703 (2018).

    CAS  Google Scholar 

  77. 77.

    Jørgensen, M. & Grönbeck, H. The site-assembly determines catalytic activity of nanoparticles. Angew. Chem. Int. Ed. 57, 5086–5089 (2018). Constructing kinetic Monte Carlo models on metal nanoparticles allowed addressing structural complexity of metal catalysts and revealed synergistic effects between assemblies of active sites.

    Google Scholar 

  78. 78.

    Jørgensen, M. & Grönbeck, H. Scaling relations and kinetic Monte Carlo simulations to bridge the materials gap in heterogeneous catalysis. ACS Catal. 7, 5054–5061 (2017).

    Google Scholar 

  79. 79.

    Foppa, L. et al. Contrasting the role of Ni/Al2O3 interfaces in water–gas shift and dry reforming of methane. J. Am. Chem. Soc. 139, 17128–17139 (2017).

    CAS  PubMed  Google Scholar 

  80. 80.

    Kunz, L., Kuhn, F. M. & Deutschmann, O. Kinetic Monte Carlo simulations of surface reactions on supported nanoparticles: a novel approach and computer code. J. Chem. Phys. 143, 044108 (2015).

    PubMed  Google Scholar 

  81. 81.

    Silaghi, M.-C., Comas-Vives, A. & Copéret, C. CO2 Activation on Ni/γ–Al2O3 catalysts by first-principles calculations: from ideal surfaces to supported nanoparticles. ACS Catal. 6, 4501–4505 (2016).

    CAS  Google Scholar 

  82. 82.

    Calle-Vallejo, F., Loffreda, D., Koper, M. T. M. & Sautet, P. Introducing structural sensitivity into adsorption–energy scaling relations by means of coordination numbers. Nat. Chem. 7, 403–410 (2015).

    CAS  PubMed  Google Scholar 

  83. 83.

    Newton, M. A. Dynamic adsorbate/reaction induced structural change of supported metal nanoparticles: heterogeneous catalysis and beyond. Chem. Soc. Rev. 37, 2644 (2008).

    CAS  PubMed  Google Scholar 

  84. 84.

    Schlögl, R. Heterogeneous catalysis. Angew. Chem. Int. Ed. 54, 3465–3520 (2015).

    Google Scholar 

  85. 85.

    Wang, Y.-G., Yoon, Y., Glezakou, V.-A., Li, J. & Rousseau, R. The role of reducible oxide–metal cluster charge transfer in catalytic processes: new insights on the catalytic mechanism of CO oxidation on Au/TiO2 from ab initio molecular dynamics. J. Am. Chem. Soc. 135, 10673–10683 (2013).

    CAS  PubMed  Google Scholar 

  86. 86.

    Helveg, S. et al. Visualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidation. Nat. Mater. 13, 884–890 (2014).

    PubMed  Google Scholar 

  87. 87.

    Zugic, B. et al. Dynamic restructuring drives catalytic activity on nanoporous gold–silver alloy catalysts. Nat. Mater. 16, 558–564 (2016).

    PubMed  Google Scholar 

  88. 88.

    Hansen, P. L. et al. Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295, 2053–2055 (2002).

    CAS  PubMed  Google Scholar 

  89. 89.

    Grønborg, S. S. et al. Visualizing hydrogen-induced reshaping and edge activation in MoS2 and Co-promoted MoS2 catalyst clusters. Nat. Commun. 9, 2211 (2018).

    PubMed  PubMed Central  Google Scholar 

  90. 90.

    Tauster, S. J., Fung, S. C. & Garten, R. L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 100, 170–175 (1978).

    CAS  Google Scholar 

  91. 91.

    Tauster, S. J. Strong metal-support interactions. Acc. Chem. Res. 20, 389–394 (1987).

    CAS  Google Scholar 

  92. 92.

    Campbell, C. T., Parker, S. C. & Starr, D. E. The effect of size-dependent nanoparticle energetics on catalyst sintering. Science 298, 811–814 (2002).

    CAS  PubMed  Google Scholar 

  93. 93.

    Campbell, C. T. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity. Acc. Chem. Res. 46, 1712–1719 (2013).

    CAS  PubMed  Google Scholar 

  94. 94.

    Bonnet, N. & Marzari, N. First-principles prediction of the equilibrium shape of nanoparticles under realistic electrochemical conditions. Phys. Rev. Lett. 110, 086104 (2013).

    PubMed  Google Scholar 

  95. 95.

    Ouyang, R., Liu, J. X. & Li, W. X. Atomistic theory of ostwald ripening and disintegration of supported metal particles under reaction conditions. J. Am. Chem. Soc. 135, 1760–1771 (2013).

    CAS  PubMed  Google Scholar 

  96. 96.

    Wang, T., Jelic, J., Rosenthal, D. & Reuter, K. Exploring pretreatment-morphology relationships: ab initio wulff construction for RuO2 nanoparticles under oxidising conditions. ChemCatChem 5, 3398–3403 (2013).

    CAS  Google Scholar 

  97. 97.

    García-Mota, M., Rieger, M. & Reuter, K. Ab initio prediction of the equilibrium shape of supported Ag nanoparticles on α-Al2O3(0001). J. Catal. 321, 1–6 (2015).

    Google Scholar 

  98. 98.

    Wang, Y. G., Mei, D., Glezakou, V. A., Li, J. & Rousseau, R. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles. Nat. Commun. 6, 6511 (2015). Ab initio molecular dynamics were used to simulate the structural distortions of oxide -supported Au catalysts under reaction conditions, revealing the dynamic formation of highly active single-atom sites.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Meyer, J. & Reuter, K. Modeling heat dissipation at the nanoscale: An embedding approach for chemical reaction dynamics on metal surfaces. Angew. Chem. Int. Ed. 53, 4721–4724 (2014).

    CAS  Google Scholar 

  100. 100.

    Rittmeyer, S. P., Bukas, V. J. & Reuter, K. Energy dissipation at metal surfaces. Adv. Phys. X 3, 1381574 (2018).

    Google Scholar 

  101. 101.

    Zhai, H. & Alexandrova, A. N. Local fluxionality of surface-deposited cluster catalysts: the case of Pt7 on Al2O3. J. Phys. Chem. Lett. 9, 1696–1702 (2018).

    CAS  PubMed  Google Scholar 

  102. 102.

    Zhai, H. & Alexandrova, A. N. Ensemble-average representation of Pt clusters in conditions of catalysis accessed through GPU accelerated deep neural network fitting global optimization. J. Chem. Theory Comput. 12, 6213–6226 (2016).

    CAS  PubMed  Google Scholar 

  103. 103.

    Baxter, E. T., Ha, M. A., Cass, A. C., Alexandrova, A. N. & Anderson, S. L. Ethylene dehydrogenation on Pt4,7,8 clusters on Al2O3: strong cluster size dependence linked to preferred catalyst morphologies. ACS Catal. 7, 3322–3335 (2017).

    CAS  Google Scholar 

  104. 104.

    Willinger, E., Massué, C., Schlögl, R. & Willinger, M. G. Identifying key structural features of IrOx water splitting catalysts. J. Am. Chem. Soc. 139, 12093–12101 (2017).

    CAS  PubMed  Google Scholar 

  105. 105.

    Hoffmann, M. J., Scheffler, M. & Reuter, K. Multi-lattice kinetic Monte Carlo simulations from first principles: reduction of the Pd(100) surface oxide by CO. ACS Catal. 5, 1199–1209 (2015).

    CAS  Google Scholar 

  106. 106.

    Lian, X., Xiao, P., Liu, R. & Henkelman, G. Calculations of oxygen adsorption-induced surface reconstruction and oxide formation on Cu(100). Chem. Mater. 29, 1472–1484 (2017).

    CAS  Google Scholar 

  107. 107.

    Frenken, J. W. M. & Groot, I. M. N. Operando Research in Heterogeneous Catalysis (Springer International Publishing, 2017).

  108. 108.

    Merte, L. R. et al. Structure of the SnO2(110)-(4×1) surface. Phys. Rev. Lett. 119, 096102 (2017).

    PubMed  Google Scholar 

  109. 109.

    Van Den Bossche, M., Grönbeck, H. & Hammer, B. Tight-binding approximation-enhanced global optimization. J. Chem. Theory Comput. 14, 2797–2807 (2018).

    PubMed  Google Scholar 

  110. 110.

    Bartók, A. P., Payne, M. C., Kondor, R. & Csányi, G. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136403 (2010).

    PubMed  Google Scholar 

  111. 111.

    Keil, F. J. Molecular modelling for reactor design. Annu. Rev. Chem. Biomol. Eng. 9, 201–227 (2018).

    PubMed  Google Scholar 

  112. 112.

    Andersson, M., Yuan, J. & Sundén, B. Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells. Appl. Energy 87, 1461–1476 (2010).

    CAS  Google Scholar 

  113. 113.

    Salmeron, M. & Schlögl, R. Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology. Surf. Sci. Rep. 63, 169–199 (2008).

    CAS  Google Scholar 

  114. 114.

    Favaro, M. et al. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface. Nat. Commun. 7, 12695 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Meskine, H., Matera, S., Scheffler, M., Reuter, K. & Metiu, H. Examination of the concept of degree of rate control by first-principles kinetic Monte Carlo simulations. Surf. Sci. 603, 1724–1730 (2009).

    CAS  Google Scholar 

  116. 116.

    Medford, A. J. et al. Assessing the reliability of calculated catalytic ammonia synthesis rates. Science 345, 197–200 (2014).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.B. and J.T.M. acknowledge support from the Alexander von Humboldt foundation. We further acknowledge support from the Solar Technologies Go Hybrid initiative of the State of Bavaria.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Karsten Reuter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bruix, A., Margraf, J.T., Andersen, M. et al. First-principles-based multiscale modelling of heterogeneous catalysis. Nat Catal 2, 659–670 (2019). https://doi.org/10.1038/s41929-019-0298-3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing