Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A robust and precious metal-free high performance cobalt Fischer–Tropsch catalyst

Abstract

Slurry-phase Fischer–Tropsch catalysis is widely used in the production of synthetic transportation fuels, but places severe stresses on the catalyst due to the demanding hydrothermal and mechanical reaction conditions. In this Article we report the synthesis, characterization and catalytic performance of a robust cobalt-based Fischer–Tropsch catalyst. Combining an inert alpha alumina support with an appropriate cobalt addition method produces a material that is easy to reduce without precious metal additives and is mechanically and hydrothermally stable. Unlike many Fischer–Tropsch catalysts, this material is resistant to sintering and shows excellent selectivity and good activity in slurry-phase testing over 1,000 hours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Morphology of the catalyst precursors.
Fig. 2: Catalyst reduction.
Fig. 3: Understanding the effect of support surface area.
Fig. 4: Slurry phase testing.
Fig. 5: Electron microscopy of the Co/alpha alumina catalyst encapsulated in wax, before and after slurry-phase reaction.

Similar content being viewed by others

Data availability

The data that support the plots within this paper, and other findings of this study, are available from the corresponding author upon reasonable request.

References

  1. de Klerk, A. in Future Energy: Improved, Sustainable and Clean Options for our Planet 2nd edn (ed. Letcher, T. M.) Ch. 12 (Elsevier, 2014).

  2. Khodakov, A. Y., Chu, W. & Fongarland, P. Advances in the development of novel cobalt Fischer−Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem. Rev. 107, 1692–1744 (2007).

    Article  CAS  Google Scholar 

  3. Jothimurugesan, K. Stable support for Fischer–Tropsch catalyst. US patent 9,370,768 B2 (2014).

  4. Rytter, E. & Holmen, A. Deactivation and regeneration of commercial type Fischer–Tropsch co-catalysts—a mini-review. Catalysts 5, 478–499 (2015).

    Article  CAS  Google Scholar 

  5. Perego, C., Bortolo, R. & Zennaro, R. Gas to liquids technologies for natural gas reserves valorization: the Eni experience. Catal. Today 142, 9–16 (2009).

    Article  CAS  Google Scholar 

  6. Antonini, A. M., Mercer, R. J. & Neale, A. F. Catalysts supports. US patent application 20160375424 A1 (2016).

  7. Ortego, J. D. Jr, Jothimurugesan, K., Espinoza, R. L., Coy, K. L. & Ortego, B. C. Fischer–Tropsch processes and catalysts using stabilized supports. US patent 7,071,239 B2 (2006)

  8. Enger, B. C., Fossan, A.-L., Borg, Ø., Rytter, E. & Holmen, A. Modified alumina as catalyst support for cobalt in the Fischer–Tropsch synthesis. J. Catal. 284, 9–22 (2011).

    Article  CAS  Google Scholar 

  9. Maciver, D. S., Tobin, H. H. & Barth, R. T. Catalytic aluminas I. Surface chemistry of eta and gamma alumina. J. Catal. 2, 485–497 (1963).

    Article  CAS  Google Scholar 

  10. Bhasin M. M. & Jarell, M. S. Catalysts comprising substantially pure alpha alumina carrier for treating exhaust gases. US patent 5,856,263 (1999).

  11. Johnson, B. R. et al. Engineered SMR catalysts based on hydrothermally stable, porous, ceramic supports for microchannel reactors. Catal. Today 120, 54–62 (2007).

    Article  CAS  Google Scholar 

  12. Munirathinam, R., Pham Minh, D. & Nzihou, A. Effect of the support and its surface modifications in cobalt-based Fischer–Tropsch synthesis. Ind. Eng. Chem. Res. 57, 16137–16161 (2018).

    Article  CAS  Google Scholar 

  13. Eri, S., Kinnari, K. J., Schanke, D. & Hilmen, A.-M. Fischer–Tropsch catalyst, preparation and use thereof. US patent 7,351,679 (2008).

  14. Ellis, P. R. Cobalt catalyst precursor. International Patent Application WO 2010/049715A1 (2010).

  15. Lok, C. M., Kelly, G. J. & Gray, G. Catalysts with high cobalt surface area. US patent 6,927,190 B2 (2005).

  16. Lok, C. M. Novel highly dispersed cobalt catalysts for improved Fischer–Tropsch productivity. Stud. Surf. Sci. Catal. 147, 283–288 (2004).

    Article  CAS  Google Scholar 

  17. Schlessinger, G., Simmons, J. W., Jabs, G. & Chamberlain, M. M. Carbonatotetramminecobalt(iii) nitrate. Inorg. Synth. 6, 173–175 (1966).

    Google Scholar 

  18. Schanke, D. et al. Study of Pt-promoted cobalt CO hydrogenation catalysts. J. Catal. 156, 85–95 (1995).

    Article  CAS  Google Scholar 

  19. Eschemann, T. O. et al. Effect of support surface treatment on the synthesis, structure and performance of Co/CNT Fischer Tropsch catalysts. J. Catal. 328, 130–138 (2015).

    Article  CAS  Google Scholar 

  20. Eschemann, T. O. & de Jong, K. P. Deactivation behavior of Co/TiO2 catalysts during Fischer–Tropsch synthesis. ACS Catal. 5, 3181–3188 (2015).

    Article  CAS  Google Scholar 

  21. Zhao, Y.-H. et al. Direct synthesis of the reduced Co-C/SiO2 as an efficient catalyst for Fischer–Tropsch synthesis. Ind. Eng. Chem. Res. 57, 1137–1145 (2018).

    Article  CAS  Google Scholar 

  22. Iglesia, E. Design, synthesis and use of cobalt-based Fischer–Tropsch synthesis catalysts. Appl. Catal. A 161, 59–78 (1997).

    Article  CAS  Google Scholar 

  23. Houska, C. R., Averbach, B. L. & Cohen, M. The cobalt transformation. Acta Metall. 8, 81–87 (1960).

    Article  Google Scholar 

  24. Andreev, A. S., d’Espinose de Lacaillerie, J.-B., Lapina, O. B. & Gerashenko, A. Thermal stability and hcp–fcc allotropic transformation in supported Co metal catalysts probed near operando by ferromagnetic NMR. Phys. Chem. Chem. Phys. 17, 14598–14604 (2015).

    Article  CAS  Google Scholar 

  25. Price, S. W. T. et al. Chemical imaging of Fischer–Tropsch catalysts under operating conditions. Sci. Adv. 3, e1602838 (2017).

    Article  Google Scholar 

  26. Boudart, M. & McDonald, M. A. Structure sensitivity of hydrocarbon synthesis from carbon monoxide and hydrogen. J. Phys. Chem. 88, 2185–2195 (1984).

    Article  CAS  Google Scholar 

  27. Fu, L. & Bartholomew, C. H. Structure sensitivity and its effects on product distribution in CO hydrogenation on cobalt/alumina. J. Catal. 92, 376–387 (1985).

    Article  CAS  Google Scholar 

  28. Wang, Z.-j, Liu, C.-j & Goodman, D. W. Surface science studies on cobalt Fischer–Tropsch catalysts. ChemCatChem 3, 551–559 (2011).

    Article  CAS  Google Scholar 

  29. van Helden, P., Ciobîcă, I. M. & Coetzer, R. L. J. The size dependent site composition of FCC cobalt nanocrystals. Catal. Today 261, 48–59 (2016).

    Article  Google Scholar 

  30. den Breejen, J. P. et al. On the origin of the cobalt particle size effects in Fischer–Tropsch catalysis. J. Am. Chem. Soc. 131, 7197–7203 (2009).

    Article  Google Scholar 

  31. Cheng, J. et al. A quantitative determination of reaction mechanisms from density functional theory calculations: Fischer–Tropsch synthesis on flat and stepped cobalt surfaces. J. Catal. 254, 285–295 (2008).

    Article  CAS  Google Scholar 

  32. Huo, C.-F., Li, Y.-W., Wang, J. & Jiao, H. Formation of CHx species from CO dissociation on double-stepped Co(0001): exploring Fischer–Tropsch mechanism. J. Phys. Chem. C 112, 14108–14116 (2008).

    Article  CAS  Google Scholar 

  33. Tsakoumis, N. E. et al. Fischer–Tropsch synthesis: an XAS/XRPD combined in situ study from catalyst activation to deactivation. J. Catal. 291, 138–148 (2012).

    Article  CAS  Google Scholar 

  34. Cats, K. H. & Weckhuysen, B. M. Combined operando X-ray diffraction/Raman spectroscopy of catalytic solids in the laboratory: the Co/TiO2 Fischer–Tropsch synthesis catalyst showcase. ChemCatChem 8, 1531–1542 (2016).

    Article  CAS  Google Scholar 

  35. Andreev, A. S., Lapina, O. B., d’Espinse de Lacaillerie, J.-B. & Khassin, A. A. Effect of alumina modification on the structure of cobalt-containing Fischer–Tropsch synthesis catalysts according to internal field 59Co NMR. Data J. Struct. Chem. 54, S102–S110 (2013).

    Article  Google Scholar 

  36. Enache, D. I., Rebours, B., Roy-Auberger, M. & Revel, R. In-situ XRD study of the influence of thermal treatment on the characteristics and the catalytic properties of cobalt-based Fischer–Tropsch catalysts. J. Catal. 205, 346–353 (2002).

    Article  CAS  Google Scholar 

  37. Karaca, H. et al. Structure and catalytic performance of Pt-promoted alumina-supported cobalt catalysts under realistic conditions of Fischer–Tropsch synthesis. J. Catal. 277, 14–26 (2011).

    Article  CAS  Google Scholar 

  38. Xia, Y., Dai, H., Jiang, H. & Zhang, L. Three-dimensional ordered mesoporous cobalt oxides: highly active catalysts for the oxidation of toluene and methanol. Catal. Commun. 11, 1171–1175 (2010).

    Article  CAS  Google Scholar 

  39. van de Loosdrecht, J., Barradas, S., van Berge, P. J. & Visagie, J. L. Support modification of cobalt based slurry phase Fischer–Tropsch catalysts. ACS Div. Fuel Chem. Prepr. 45, 587–591 (2000).

    Google Scholar 

  40. Jacobs, G. et al. Fischer–Tropsch synthesis: temperature programmed EXAFS/XANES investigation of the influence of support type, cobalt loading, and noble metal promoter addition to the reduction behavior of cobalt oxide particles. Appl. Catal. A 333, 177–191 (2007).

    Article  CAS  Google Scholar 

  41. Magrini-Bair, K. A. et al. Fluidizable reforming catalyst development for conditioning biomass-derived syngas. Appl. Catal. A 318, 199–206 (2007).

    Article  CAS  Google Scholar 

  42. Greenwood, N. N. & Earnshaw, A. in Chemistry of the Elements 273–277 (Pergamon Press, 1984).

  43. Magistro, A. J. Attrition resistant catalyst support. US patent 5,037,794 (1991).

  44. ASTM D5757-95: Standard Test Method for Determination of Attrition and Abrasion of Powdered Catalysts by Air Jets (ASTM, 1995).

  45. de Klerk, A. Fischer–Tropsch fuels refinery design. Energy Environ. Sci. 4, 1177 (2011).

    Article  Google Scholar 

  46. Dalai, A. K. & Davis, B. H. Fischer–Tropsch synthesis: a review of water effects on the performances of unsupported and supported Co catalysts. Appl. Catal. A 348, 1–15 (2008).

    Article  CAS  Google Scholar 

  47. Roth, W. L. J. The magnetic structure of Co3O4. J. Phys. Chem. Solids 25, 1–10 (1964).

    Article  CAS  Google Scholar 

  48. Sadeqzadeh, M. et al. Deactivation of a Co/Al2O3 Fischer–Tropsch catalyst by water-induced sintering in slurry reactor: modeling and experimental investigations. Catal. Today 215, 52–59 (2013).

    Article  CAS  Google Scholar 

  49. Hosseini, S. A., Taeb, A., Feyzi, F. & Yaripour, F. Fischer–Tropsch synthesis over Ru-promoted Co/γ-Al2O3 catalysts in a CSTR. Catal. Commun. 5, 137–143 (2004).

    Article  CAS  Google Scholar 

  50. Li, J. et al. Fischer–Tropsch synthesis: effect of water on the deactivation of Pt promoted Co/Al2O3 catalysts. Appl. Catal. A 228, 203–212 (2002).

    Article  CAS  Google Scholar 

  51. Gnanamani, M. K. et al. Ga and In modified ceria as supports for cobalt-catalyzed Fischer Tropsch synthesis. Appl. Catal. A 547, 115–123 (2017).

    Article  CAS  Google Scholar 

  52. Ma, W. et al. Fischer–Tropsch synthesis: kinetics and water effect study over 25% Co/Al2O3 catalysts. Catal. Today 228, 158–166 (2014).

    Article  CAS  Google Scholar 

  53. Eri, S., Kinnari, K. J., Schanke, D. & Hilmen, A.-M. Fischer–Tropsch catalyst with low surface area alumina, its preparation and use thereof. US patent application 2004/0077737A1 (2004).

  54. Lögdberg, S. et al. Effect of water on the space-time yield of different supported cobalt catalysts during Fischer Tropsch synthesis. Appl. Catal. A 393, 109–121 (2011).

    Article  Google Scholar 

  55. Moodley, D. J. et al. Carbon deposition as a deactivation mechanism of cobalt-based Fischer–Tropsch synthesis catalysts under realistic conditions. Appl. Catal. A 354, 102–110 (2009).

    Article  CAS  Google Scholar 

  56. Jacobs, G., Patterson, P. M., Das, T. K., Luo, M. & Davis, B. H. Fischer–Tropsch synthesis: effect of water on Co/Al2O3 catalysts and XAFS characterization of reoxidation phenomena. Appl. Catal. A Gen. 270, 65–76 (2004).

    Article  CAS  Google Scholar 

  57. Tsakoumis, N. E., Rønning, M., Borg, Ø., Rytter, E. & Holmen, A. Deactivation of cobalt-based Fischer–Tropsch catalysts: a review. Catal. Today 154, 162–182 (2010).

    Article  CAS  Google Scholar 

  58. van Berge, P. J., van de Loosdrecht, J., Barradas, S. & van der Kraan, A. M. Oxidation of cobalt based Fischer–Tropsch catalysts as a deactivation mechanism. Catal. Today 58, 321–334 (2000).

    Article  Google Scholar 

  59. Saib, A. M. et al. Fundamental understanding of deactivation and regeneration of cobalt Fischer–Tropsch synthesis catalysts. Catal. Today 154, 271–282 (2010).

    Article  CAS  Google Scholar 

  60. Clarkson, J. et al. Deactivation of alumina supported cobalt FT catalysts during testing in a continuous-stirred tank reactor. Appl. Catal. A 550, 28–37 (2018).

    Article  CAS  Google Scholar 

  61. Overett, M. J., Breedt, B., du Plessis, E., Erasmus, W. & van de Loosdrecht, J. Sintering as a deactivation mechanism for an alumina supported cobalt Fischer Tropsch synthesis catalyst. Prep. Pap. Am. Chem. Soc. Div. Petr. Chem. 53, 126–128 (2008).

    CAS  Google Scholar 

  62. Munnik, P., de Jongh, P. E. & de Jong, K. P. Control and impact of the nanoscale distribution of supported cobalt particles used in Fischer–Tropsch catalysis. J. Am. Chem. Soc. 136, 7333–7340 (2014).

    Article  CAS  Google Scholar 

  63. Chambrey, S. et al. Fischer Tropsch synthesis in milli-fixed bed reactor: comparison with centrimetric fixed bed and slurry stirred tank reactors. Catal. Today 171, 201–206 (2011).

    Article  CAS  Google Scholar 

  64. Reuel, R. & Bartholomew, C. H. The stoichiometries of H2 and CO adsorptions on cobalt: effects of support and preparation. J. Catal. 85, 63–77 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge various colleagues at Johnson Matthey for their help with analysis relating to this paper: M. Gregory and P. Fisher (ICP); H. Jobson, J. McNaught, E. Bilbé, K. Simmance and H. Marchbank (XRD); S. Longworth, M. Briceno, S. Spratt, A. Phillips and D. Trung Trang (electron microscopy); N. Barrow and M. Johnson (NMR); C. Baptist (GC analysis); P.J. Ellis (TPH). The authors are especially grateful to J. Foise and M. Francis of Saint Gobain Norpro for supplying the alpha alumina materials used in this work, arranging the steaming experiments, and for many insightful discussions.

Author information

Authors and Affiliations

Authors

Contributions

P.R.E. made the catalysts, performed and coordinated the characterization studies. D.S.J. and D.W.J. performed fixed-bed tests and analysed the results. D.I.E. performed slurry-phase testing and analysed the results. G.J.K. led the research programme. P.R.E. coordinated the production of the manuscript, to which all authors contributed.

Corresponding author

Correspondence to Peter R. Ellis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Supplementary Figs. 1–19, Supplementary Tables 1–10, Supplementary references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellis, P.R., Enache, D.I., James, D.W. et al. A robust and precious metal-free high performance cobalt Fischer–Tropsch catalyst. Nat Catal 2, 623–631 (2019). https://doi.org/10.1038/s41929-019-0288-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0288-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing