Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Iron-catalysed regioselective hydrogenation of terminal epoxides to alcohols under mild conditions

Abstract

The reduction of epoxides has been recognized as an important method for the synthesis of alcohols using stoichiometric amounts of metal hydride reducing agents. However, homogeneous catalysis-enabled hydrogenation processes with molecular hydrogen remain scarce. Here, we present a general methodology for the synthesis of primary alcohols in high yields, selectively and under mild conditions, from aliphatic and aromatic epoxides. Crucial for the hydrogenation of terminal epoxides is the presence of an Fe(BF4)2.6H2O/tetraphos catalyst system. Compared to existing methods, which make use of noble metals, the presented protocol shows broad substrate scope and good functional group tolerance. The generality of this is showcased by transformation of various natural products, including steroids, terpenoids, sesquiterpenoids and drug derivatives, which give the desired alcohols in moderate to excellent yields. Mechanistic studies confirm the distinct feature of the catalyst system, which is active for Meinwald rearrangement of epoxides as well as for carbonyl hydrogenations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis of primary alcohols from olefins.
Fig. 2: Hydrogenation of terminal epoxides to alcohols.
Fig. 3: Iron-catalysed hydrogenation of terminal epoxides.
Fig. 4: Iron-catalysed hydrogenation of epoxides derived from natural products and drug derivatives.
Fig. 5: Mechanistic findings.
Fig. 6: Mechanistic studies.

Similar content being viewed by others

Data availability

CCDC 1895726 (S7), 1895727 (S9), 1895728 (S10), 1895729 (9a) and 1895730 (10′) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Further data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Weissermel, K. & Arpe, H.-J. Industrial Organic Chemistry 4th edn (Wiley-VCH, Hoboken, 2008).

  2. Dong, G., Teo, P., Wickens, Z. K. & Grubbs, R. H. Primary alcohols from terminal olefins: formal anti-Markovnikov hydration via triple relay catalysis. Science 333, 1609–1612 (2011).

    Article  CAS  Google Scholar 

  3. Takahashi, K., Yamashita, M., Ichihara, T., Nakano, K. & Nozaki, K. High-yielding tandem hydroformylation/hydrogenation of a terminal olefin to produce a linear alcohol using a Rh/Ru dual catalyst system. Angew. Chem. Int. Ed. 49, 4488–4490 (2010).

    Article  CAS  Google Scholar 

  4. Torres, G. M., Frauenlob, R., Franke, R. & Börner, A. Production of alcohols via hydroformylation. Catal. Sci. Technol. 5, 34–54 (2015).

    Article  CAS  Google Scholar 

  5. Fleischer, I. et al. From olefins to alcohols: efficient and regioselective ruthenium-catalyzed domino hydroformylation/reduction sequence. Angew. Chem. Int. Ed. 52, 2949–2953 (2013).

    Article  CAS  Google Scholar 

  6. Yuki, Y., Takahashi, K., Tanaka, Y. & Nozaki, K. Tandem isomerization/hydroformylation/hydrogenation of internal alkenes to n-alcohols using Rh/Ru dual- or ternary-catalyst systems. J. Am. Chem. Soc. 135, 17393–17400 (2013).

    Article  CAS  Google Scholar 

  7. Diab, L., Šmejkal, T., Geier, J. & Breit, B. Supramolecular catalyst for aldehyde hydrogenation and tandem hydroformylation–hydrogenation. Angew. Chem. Int. Ed. 48, 8022–8026 (2009).

    Article  CAS  Google Scholar 

  8. Brown, H. C. & Zweifel, G. A stereospecific cis hydration of the double bond in cyclic derivatives. J. Am. Chem. Soc. 81, 247–247 (1959).

    Article  CAS  Google Scholar 

  9. Bellussi, G. et al. (eds) U llmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH, Hoboken, 2000).

  10. Denard, C. A. et al. Development of a one-pot tandem reaction combining ruthenium-catalyzed alkene metathesis and enantioselective enzymatic oxidation to produce aryl epoxides. ACS Catal. 5, 3817–3822 (2015).

    Article  CAS  Google Scholar 

  11. Zhang, W., Loebach, J. L., Wilson, S. R. & Jacobsen, E. N. Enantioselective epoxidation of unfunctionalized olefins catalyzed by salen manganese complexes. J. Am. Chem. Soc. 112, 2801–2803 (1990).

    Article  CAS  Google Scholar 

  12. Katsuki, T. & Sharpless, K. B. The first practical method for asymmetric epoxidation. J. Am. Chem. Soc. 102, 5974–5976 (1980).

    Article  CAS  Google Scholar 

  13. Aggarwal, V. K. & Winn, C. L. Catalytic, asymmetric sulfur ylide-mediated epoxidation of carbonyl compounds: scope, selectivity and applications in synthesis. Acc. Chem. Res. 37, 611–620 (2004).

    Article  CAS  Google Scholar 

  14. Ito, M., Hirakawa, M., Osaku, A. & Ikariya, T. Highly efficient chemoselective hydrogenolysis of epoxides catalyzed by a (η5-C5(CH3)5)Ru complex bearing a 2-(diphenylphosphino)ethylamine ligand. Organometallics 22, 4190–4192 (2003).

    Article  CAS  Google Scholar 

  15. Fujitsu, H., Shirahama, S., Matsumura, E., Takeshita, K. & Mochida, I. Catalytic hydrogenation of styrene oxide with cationic rhodium complexes. J. Org. Chem. 46, 2287–2290 (1981).

    Article  CAS  Google Scholar 

  16. Murru, S., Nicholas, K. M. & Srivastava, R. S. Ruthenium(ii) sulfoxides-catalyzed hydrogenolysis of glycols and epoxides. J. Mol. Catal. A 363–364, 460–464 (2012).

    Article  Google Scholar 

  17. Sajiki, H., Hattori, K. & Hirota, K. Pd/C(en)-catalyzed regioselective hydrogenolysis of terminal epoxides to secondary alcohols. Chem. Commun. 1041–1042 (1999).

  18. Kwon, M. S., Park, I. S., Jang, J. S., Lee, J. S. & Park, J. Magnetically separable Pd catalyst for highly selective epoxide hydrogenolysis under mild conditions. Org. Lett. 9, 3417–3419 (2007).

    Article  CAS  Google Scholar 

  19. Ley, S. V. et al. Recyclable polyurea-microencapsulated pd(0) nanoparticles: an efficient catalyst for hydrogenolysis of epoxides. Org. Lett. 5, 4665–4668 (2003).

    Article  CAS  Google Scholar 

  20. Newman, M. S., Underwood, G. & Renoll, M. The reduction of terminal epoxides. J. Am. Chem. Soc. 71, 3362–3363 (1949).

    Article  CAS  Google Scholar 

  21. O, W. W. N., Lough, A. J. & Morris, R. H. The hydrogenation of molecules with polar bonds catalyzed by a ruthenium(ii) complex bearing a chelating N-heterocyclic carbene with a primary amine donor. Chem. Commun. 46, 8240–8242 (2010).

    Article  CAS  Google Scholar 

  22. Gansäuer, A., Fan, C.-A. & Piestert, F. Sustainable radical reduction through catalytic hydrogen atom transfer. J. Am. Chem. Soc. 130, 6916–6917 (2008).

    Article  Google Scholar 

  23. Wenz, J., Wadepohl, H. & Gade, L. H. Regioselective hydrosilylation of epoxides catalysed by nickel(ii) hydrido complexes. Chem. Commun. 53, 4308–4311 (2017).

    Article  CAS  Google Scholar 

  24. Gansäuer, A., Klatte, M., Brändle, G. M. & Friedrich, J. Catalytic hydrogen atom transfer (HAT) for sustainable and diastereoselective radical reduction. Angew. Chem. Int. Ed. 51, 8891–8894 (2012).

    Article  Google Scholar 

  25. Bullock, R. M. Abundant metals give precious hydrogenation performance. Science 342, 1054–1055 (2013).

    Article  CAS  Google Scholar 

  26. Chirik, P. & Morris, R. Getting down to earth: the renaissance of catalysis with abundant metals. Acc. Chem. Res. 48, 2495 (2015).

    Article  CAS  Google Scholar 

  27. Chirik, P. J. Iron- and cobalt-catalyzed alkene hydrogenation: catalysis with both redox-active and strong field ligands. Acc. Chem. Res. 48, 1687–1695 (2015).

    Article  CAS  Google Scholar 

  28. Filonenko, G. A., van Putten, R., Hensen, E. J. M. & Pidko, E. A. Catalytic (de)hydrogenation promoted by non-precious metals—Co, Fe and Mn: recent advances in an emerging field. Chem. Soc. Rev. 47, 1459–1483 (2018).

    Article  CAS  Google Scholar 

  29. Kallmeier, F. & Kempe, R. Manganese complexes for (de)hydrogenation catalysis: a comparison to cobalt and iron catalysts. Angew. Chem. Int. Ed. 57, 46–60 (2018).

    Article  CAS  Google Scholar 

  30. Morris, R. H. Asymmetric hydrogenation, transfer hydrogenation and hydrosilylation of ketones catalyzed by iron complexes. Chem. Soc. Rev. 38, 2282–2291 (2009).

    Article  CAS  Google Scholar 

  31. Zell, T. & Milstein, D. Hydrogenation and dehydrogenation iron pincer catalysts capable of metal–ligand cooperation by aromatization/dearomatization. Acc. Chem. Res. 48, 1979–1994 (2015).

    Article  CAS  Google Scholar 

  32. Chakraborty, S., Bhattacharya, P., Dai, H. & Guan, H. Nickel and iron pincer complexes as catalysts for the reduction of carbonyl compounds. Acc. Chem. Res. 48, 1995–2003 (2015).

    Article  CAS  Google Scholar 

  33. Misal Castro, L. C., Li, H., Sortais, J.-B. & Darcel, C. When iron met phosphines: a happy marriage for reduction catalysis. Green Chem. 17, 2283–2303 (2015).

    Article  CAS  Google Scholar 

  34. Ziebart, C. et al. Well-defined iron catalyst for improved hydrogenation of carbon dioxide and bicarbonate. J. Am. Chem. Soc. 134, 20701–20704 (2012).

    Article  CAS  Google Scholar 

  35. Wienhöfer, G., Westerhaus, F. A., Junge, K., Ludwig, R. & Beller, M. A molecularly defined iron-catalyst for the selective hydrogenation of α,β-unsaturated aldehydes. Chem. Eur. J. 19, 7701–7707 (2013).

    Article  Google Scholar 

  36. Rezayee, N. M., Samblanet, D. C. & Sanford, M. S. Iron-catalyzed hydrogenation of amides to alcohols and amines. ACS Catal. 6, 6377–6383 (2016).

    Article  CAS  Google Scholar 

  37. Lagaditis, P. O. et al. Iron(ii) complexes containing unsymmetrical P–N–P′ pincer ligands for the catalytic asymmetric hydrogenation of ketones and imines. J. Am. Chem. Soc. 136, 1367–1380 (2014).

    Article  CAS  Google Scholar 

  38. Gorgas, N., Stöger, B., Veiros, L. F. & Kirchner, K. Highly efficient and selective hydrogenation of aldehydes: a well-defined Fe(ii) catalyst exhibits noble-metal activity. ACS Catal. 6, 2664–2672 (2016).

    Article  CAS  Google Scholar 

  39. Casey, C. P. & Guan, H. An efficient and chemoselective iron catalyst for the hydrogenation of ketones. J. Am. Chem. Soc. 129, 5816–5817 (2007).

    Article  CAS  Google Scholar 

  40. Chakraborty, S., Brennessel, W. W. & Jones, W. D. A molecular iron catalyst for the acceptorless dehydrogenation and hydrogenation of N-heterocycles. J. Am. Chem. Soc. 136, 8564–8567 (2014).

    Article  CAS  Google Scholar 

  41. Yu, R. P. et al. High-activity iron catalysts for the hydrogenation of hindered, unfunctionalized alkenes. ACS Catal. 2, 1760–1764 (2012).

    Article  CAS  Google Scholar 

  42. Vyas, D. J., Larionov, E., Besnard, C., Guénée, L. & Mazet, C. Isomerization of terminal epoxides by a [Pd–H] catalyst: a combined experimental and theoretical mechanistic study. J. Am. Chem. Soc. 135, 6177–6183 (2013).

    Article  CAS  Google Scholar 

  43. Lamb, J. R., Mulzer, M., LaPointe, A. M. & Coates, G. W. Regioselective isomerization of 2,3-disubstituted epoxides to ketones: an alternative to the wacker oxidation of internal alkenes. J. Am. Chem. Soc. 137, 15049–15054 (2015).

    Article  CAS  Google Scholar 

  44. Jiang, G. et al. Ruthenium porphyrin-catalyzed aerobic oxidation of terminal aryl alkenes to aldehydes by a tandem epoxidation–isomerization pathway. Angew. Chem. Int. Ed. 47, 6638–6642 (2008).

    Article  CAS  Google Scholar 

  45. Hrdina, R. et al. Silicon–(thio)urea Lewis acid catalysis. J. Am. Chem. Soc. 133, 7624–7627 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the analytic department (LIKAT) for their support, and the State of Mecklenburg-Western Pomerania, the Federal State of Germany (BMBF) and the EU (grant 670986) for financial support. The authors also thank W. Baumann (LIKAT) for helpful discussions regarding NMR analyses and D. Leonard (LIKAT) for assistance with manuscript preparation.

Author information

Authors and Affiliations

Authors

Contributions

M.B. and W. Liu. conceived and designed the experiments. W. Liu and W. Li performed the experiments and analysed the data. A.S. performed X-ray crystal structure analyses. K.J. participated in the discussions and supported the project. M.B. and W. Liu co-wrote the paper.

Corresponding author

Correspondence to Matthias Beller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Supplementary Tables 1-6, Supplementary references

compound S7

Crystallographic Data for compound S7

compound S9

Crystallographic Data for compound S9

compound S10

Crystallographic Data for compound S10

compound 9a

Crystallographic Data for compound 9a

compound 10’

Crystallographic Data for compound 10’

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Li, W., Spannenberg, A. et al. Iron-catalysed regioselective hydrogenation of terminal epoxides to alcohols under mild conditions. Nat Catal 2, 523–528 (2019). https://doi.org/10.1038/s41929-019-0286-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0286-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research