Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reprogramming the enzymatic assembly line for site-specific fucosylation

Abstract

Fucosylated carbohydrate determinants are common components of cell surface glycoconjugates and secreted unconjugated glycans, which play pivotal roles in many physiological and pathological processes. The biosynthesis of Lewis antigens involves multiple fucosyltransferases that catalyse the fucosylation of the poly-N-acetyllactosamine carbohydrate backbone in a non-site-specific manner and thus generate heterogeneous and incompletely fucosylated Lewis antigen regioisomers. In this study, an α2,6-sialylation module was used to introduce α2,6-linked sialic acid to specific sites as the protecting group against fucosylation, thus precisely controlling enzymatic fucosylation of poly-N-acetyllactosamine glycans in a site-specific manner. The sialic acid protecting group can be easily removed by sialidase after fucosylation to provide a variety of fucosylated poly-N-acetyllactosamine glycans with defined fucosylation patterns. The general applicability and robustness of this reprogrammed enzymatic assembly line was exemplified in the synthesis of 22 complex Lewis antigens and chimeric histo-blood group antigens with a total of 10 enzyme modules for the construction of 10 different glycosidic linkages.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Structures of fucosylated carbohydrate determinants and incomplete fucosylated glycans.
Fig. 2: Enzyme substrate specificities and strategy design.
Fig. 3: Site-specific α1,3-fucosylation of type-2 glycan chains.
Fig. 4: Site-specific α1,3- or α1,4-fucosylation of type-1 and type-2 hybrid poly-LacNAc chains.
Fig. 5: Enzymatic synthesis of VIM-2 antigen and fucosylated N-glycan.
Fig. 6: LC–MS and MS2 of Lewis antigen regioisomers 28–30.

Data availability

The NMR spectroscopy, LC-MS, MS2 and other data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Varki, A. Biological roles of glycans. Glycobiology 27, 3–49 (2017).

    Article  CAS  Google Scholar 

  2. Bertozzi, C. R. & Kiessling, L. L. Chemical glycobiology. Science 291, 2357–2364 (2001).

    Article  CAS  Google Scholar 

  3. Freeze, H. H. Genetic defects in the human glycome. Nat. Rev. Genet. 7, 537–551 (2006).

    Article  CAS  Google Scholar 

  4. Cummings, R. D. The repertoire of glycan determinants in the human glycome. Mol. BioSyst. 5, 1087–1104 (2009).

    Article  CAS  Google Scholar 

  5. Rademacher, C. & Paulson, J. C. Glycan fingerprints: calculating diversity in glycan libraries. ACS Chem. Biol. 7, 829–834 (2012).

    Article  CAS  PubMed Central  Google Scholar 

  6. Werz, D. B. et al. Exploring the structural diversity of mammalian carbohydrates (‘glycospace’) by statistical databank analysis. ACS Chem. Biol. 2, 685–691 (2007).

    Article  CAS  Google Scholar 

  7. Chandrasekaran, A. et al. Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin. Nat. Biotechnol. 26, 107–113 (2008).

    Article  CAS  Google Scholar 

  8. Kiessling, L. L. & Splain, R. A. Chemical approaches to glycobiology. Ann. Rev. Biochem. 79, 619–653 (2010).

    Article  CAS  Google Scholar 

  9. Rillahan, C. D. & Paulson, J. C. Glycan microarrays for decoding the glycome. Ann. Rev. Biochem. 80, 797–823 (2011).

    Article  CAS  PubMed Central  Google Scholar 

  10. Ma, B., Simala-Grant, J. L. & Taylor, D. E. Fucosylation in prokaryotes and eukaryotes. Glycobiology 16, 158R–184R (2006).

    Article  CAS  PubMed Central  Google Scholar 

  11. Schneider, M., Al-Shareffi, E. & Haltiwanger, R. S. Biological functions of fucose in mammals. Glycobiology 27, 601–618 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  12. Li, J., Hsu, H.-C., Mountz, J. D. & Allen, J. G. Unmasking fucosylation: from cell adhesion to immune system regulation and diseases. Cell Chem. Biol. 25, 499–512 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  13. Simanek, E. E., McGarvey, G. J., Jablonowski, J. A. & Wong, C.-H. Selectin–carbohydrate interactions: from natural ligands to designed mimics. Chem. Rev. 98, 833–862 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  14. Seeberger, P. H. & Werz, D. B. Synthesis and medical applications of oligosaccharides. Nature 446, 1046–1051 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  15. Boltje, T. J., Buskas, T. & Boons, G.-J. Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research. Nat. Chem. 1, 611–622 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  16. Yin, Z. & Huang, X. Recent development in carbohydrate based anticancer vaccines. J. Carbohydr. Chem. 31, 143–186 (2012).

    Article  CAS  PubMed Central  Google Scholar 

  17. Bode, L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology 22, 1147–1162 (2012).

    Article  CAS  PubMed Central  Google Scholar 

  18. Chen, X. Human milk oligosaccharides (HMOS): structure, function, and enzyme-catalyzed synthesis. Adv. Carbohydr. Chem. Biochem. 72, 113–190 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  19. Lemieux, R. & Driguez, H. The chemical synthesis of 2-acetamido-2-deoxy-4-O-(α-l-fucopyranosyl)-3-O-(β-d-galactopyranosyl)-d-glucose. The Lewis a blood-group antigenic determinant. J. Am. Chem. Soc. 97, 4063–4069 (1975).

    Article  CAS  Google Scholar 

  20. Hummel, G. & Schmidt, R. R. A versatile synthesis of the lactoneo-series antigens—synthesis of sialyl dimer Lewis X and of dimer Lewis Y. Tetrahedron Lett. 38, 1173–1176 (1997).

    Article  CAS  Google Scholar 

  21. Nicolaou, K. & Mitchell, H. J. Adventures in carbohydrate chemistry: new synthetic technologies, chemical synthesis, molecular design, and chemical biology. Angew. Chem. Int. Ed. 40, 1576–1624 (2001).

    Article  CAS  Google Scholar 

  22. Danishefsky, S. J. & Bilodeau, M. T. Glycals in organic synthesis: the evolution of comprehensive strategies for the assembly of oligosaccharides and glycoconjugates of biological consequence. Angew. Chem. Int. Ed. 35, 1380–1419 (1996).

    Article  CAS  Google Scholar 

  23. Yan, L. & Kahne, D. Generalizing glycosylation: synthesis of the blood group antigens Lea, Leb, and Lex using a standard set of reaction conditions. J. Am. Chem. Soc. 118, 9239–9248 (1996).

    Article  CAS  Google Scholar 

  24. Zhu, T. & Boons, G.-J. A novel and efficient synthesis of a dimeric Lex oligosaccharide on polymeric support. J. Am. Chem. Soc. 122, 10222–10223 (2000).

    Article  CAS  Google Scholar 

  25. Seeberger, P. H. The logic of automated glycan assembly. Acc. Chem. Res. 48, 1450–1463 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  26. Miermont, A., Zeng, Y., Jing, Y., Ye, X.-s & Huang, X. Syntheses of Lewis X and dimeric Lewis X: construction of branched oligosaccharides by a combination of preactivation and reactivity based chemoselective one-pot glycosylations. J. Org. Chem. 72, 8958–8961 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  27. Koeller, K. M. & Wong, C.-H. Synthesis of complex carbohydrates and glycoconjugates: enzyme-based and programmable one-pot strategies. Chem. Rev. 100, 4465–4494 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  28. Krasnova, L. & Wong, C.-H. Understanding the chemistry and biology of glycosylation with glycan synthesis. Ann. Rev. Biochem. 85, 599–630 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  29. Yu, H. et al. H. pylori α1–3/4-fucosyltransferase (Hp3/4FT)-catalyzed one-pot multienzyme (OPME) synthesis of Lewis antigens and human milk fucosides. Chem. Commun. 53, 11012–11015 (2017).

    Article  CAS  Google Scholar 

  30. Moremen, K. W. et al. Expression system for structural and functional studies of human glycosylation enzymes. Nat. Chem. Biol. 14, 156–162 (2018).

    Article  CAS  Google Scholar 

  31. Wang, Z. et al. A general strategy for the chemoenzymatic synthesis of asymmetrically branched N-glycans. Science 341, 379–383 (2013).

    Article  CAS  Google Scholar 

  32. Shivatare, S. S. et al. Modular synthesis of N-glycans and arrays for the hetero-ligand binding analysis of HIV antibodies. Nat. Chem. 8, 338–346 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  33. Wu, Z. et al. Identification of the binding roles of terminal and internal glycan epitopes using enzymatically synthesized N-glycans containing tandem epitopes. Org. Biomol. Chem. 14, 11106–11116 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  34. Meng, C. et al. Chemoenzymatic assembly of mammalian O-mannose glycans. Angew. Chem. Int. Ed. 57, 9003–9007 (2018).

    Article  CAS  Google Scholar 

  35. Wang, S. et al. Facile chemoenzymatic synthesis of O-mannosyl glycans. Angew. Chem. Int. Ed. 57, 9268–9273 (2018).

    Article  CAS  Google Scholar 

  36. Prudden, A. R. et al. Synthesis of asymmetrical multiantennary human milk oligosaccharides. Proc. Natl Acad. Sci. USA 114, 6954–6959 (2017).

    Article  CAS  Google Scholar 

  37. Xiao, Z. et al. Chemoenzymatic synthesis of a library of human milk oligosaccharides. J. Org. Chem. 81, 5851–5865 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  38. Peng, W. et al. Recent H3N2 viruses have evolved specificity for extended, branched human-type receptors, conferring potential for increased avidity. Cell Host Microbe 21, 23–34 (2017).

    Article  CAS  Google Scholar 

  39. Hahm, H. S. et al. Automated glycan assembly of oligo-N-acetyllactosamine and keratan sulfate probes to study virus-glycan interactions. Chem 2, 114–124 (2017).

    Article  CAS  Google Scholar 

  40. Rech, C. et al. Combinatorial one-pot synthesis of poly-N-acetyllactosamine oligosaccharides with Leloir-glycosyltransferases. Adv. Syn. Catal. 353, 2492–2500 (2011).

    Article  CAS  Google Scholar 

  41. Liu, L. et al. Streamlining the chemoenzymatic synthesis of complex N-glycans by a stop and go strategy. Nat. Chem. 11, 161–169 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  42. Hakomori, S.-i Traveling for the glycosphingolipid path. Glycoconj. J. 17, 627–647 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  43. Lin, S.-W., Yuan, T.-M., Li, J.-R. & Lin, C.-H. Carboxyl terminus of Helicobacter pylori α1,3-fucosyltransferase determines the structure and stability. Biochemistry 45, 8108–8116 (2006).

    Article  CAS  PubMed Central  Google Scholar 

  44. Choi, Y. H., Kim, J. H., Park, B. S. & Kim, B. G. Solubilization and iterative saturation mutagenesis of α1,3-fucosyltransferase from Helicobacter pylori to enhance its catalytic efficiency. Biotechnol. Bioeng. 113, 1666–1675 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  45. Ye, J. et al. Diversity-oriented enzymatic modular assembly of ABO histo-blood group antigens. ACS Catal. 6, 8140–8144 (2016).

    Article  CAS  Google Scholar 

  46. Yu, H. & Chen, X. One-pot multienzyme (OPME) systems for chemoenzymatic synthesis of carbohydrates. Org. Biomol. Chem. 14, 2809–2818 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  47. Yu, H. et al. Highly efficient chemoenzymatic synthesis of naturally occurring and non-natural α2,6-linked sialosides: a P. damsela α2,6-sialyltransferase with extremely flexible donor–substrate specificity. Angew. Chem. Int. Ed. 45, 3938–3944 (2006).

    Article  CAS  Google Scholar 

  48. Nycholat, C. M. et al. Synthesis of biologically active N- and O-linked glycans with multisialylated poly-N-acetyllactosamine extensions using P. damsela α2–6 sialyltransferase. J. Am. Chem. Soc. 135, 18280–18283 (2013).

    Article  CAS  PubMed Central  Google Scholar 

  49. Meng, X. et al. Regioselective chemoenzymatic synthesis of ganglioside disialyl tetrasaccharide epitopes. J. Am. Chem. Soc. 136, 5205–5208 (2014).

    Article  CAS  PubMed Central  Google Scholar 

  50. Peng, W. et al. Helicobacter pylori β1,3-N-acetylglucosaminyltransferase for versatile synthesis of type 1 and type 2 poly-LacNAcs on N-linked, O-linked and I-antigen glycans. Glycobiology 22, 1453–1464 (2012).

    Article  CAS  PubMed Central  Google Scholar 

  51. Moran, A. P. Relevance of fucosylation and Lewis antigen expression in the bacterial gastroduodenal pathogen Helicobacter pylori. Carbohydr. Res. 343, 1952–1965 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  52. Chen, C. et al. Sequential one-pot multienzyme (OPME) synthesis of lacto-N-neotetraose and its sialyl and fucosyl derivatives. Chem. Commun. 51, 7689–7692 (2015).

    Article  CAS  Google Scholar 

  53. Tasnima, N., Yu, H., Li, Y., Santra, A. & Chen, X. Chemoenzymatic synthesis of para-nitrophenol (pNP)-tagged α2–8-sialosides and high-throughput substrate specificity studies of α2–8-sialidases. Org. Biomol. Chem. 15, 160–167 (2017).

    Article  CAS  Google Scholar 

  54. Liu, X.-w et al. Characterization and synthetic application of a novel β1,3-galactosyltransferase from Escherichia coli O55:H7. Bioorg. Med. Chem. 17, 4910–4915 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  55. Sugiarto, G. et al. A sialyltransferase mutant with decreased donor hydrolysis and reduced sialidase activities for directly sialylating Lewis X. ACS Chem. Biol. 7, 1232–1240 (2012).

    Article  CAS  PubMed Central  Google Scholar 

  56. Räbinä, J. et al. Enzymatic synthesis of site-specifically (α1–3)-fucosylated polylactosamines containing either a sialyl Lewis x, a VIM-2, or a sialylated and internally difucosylated sequence. Carbohydr. Res. 305, 491–499 (1998).

    Article  Google Scholar 

  57. Li, C. & Wang, L.-X. Chemoenzymatic methods for the synthesis of glycoproteins. Chem. Rev. 118, 8359–8413 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  58. Varki, A. et al. Symbol nomenclature for graphical representations of glycans. Glycobiology 25, 1323–1324 (2015).

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the National Natural Science Foundation of China (Grant nos. 21672128, 21877072 and 21807064), State Key Laboratory of Microbial Technology (M2016-06), Department of Science and Technology of Shandong Province (2016GSF121002, ZR201709190252 and 2016GGH4502) and Shandong University (2018JC053). The authors thank X. Chen at the University of California, Davis and X. Huang at Michigan State University for reading the manuscript and helpful discussion.

Author information

Authors and Affiliations

Authors

Contributions

H.C. conceived and designed the experiments. J.Y., H.X., N.S., C.-C.L. and X.-W.L. carried out the enzymatic synthesis. A.S. and L.C. performed the LC-MS and MS2 experiments. J.Y., A.S., L.C., C.-C.L. and H.C. analysed the data. G.G., S.W., J.Z., P.W., M.X. and F.W. contributed materials and/or analysis tools. C.-C.L. and H.C. wrote the paper with input from all the authors.

Corresponding author

Correspondence to Hongzhi Cao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figs. 1–67 and Supplementary references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ye, J., Xia, H., Sun, N. et al. Reprogramming the enzymatic assembly line for site-specific fucosylation. Nat Catal 2, 514–522 (2019). https://doi.org/10.1038/s41929-019-0281-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0281-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing