Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Electrochemical synthesis of ammonia as a potential alternative to the Haber–Bosch process

The preeminent Haber–Bosch process has been feeding humankind for more than one hundred years. Are electrochemical pathways for ammonia synthesis able to compete with it in the future? Electrocatalysts, electrolytes and novel cell design may be key.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathways to renewable ammonia.


  1. Hager, T. The Alchemy of Air: A Jewish Genius, a Doomed Tycoon, and the Scientific Discovery that Fed the World but Fueled the Rise of Hitler (Random House, New York, 2009).

  2. Industrial Efficiency Technology Database (Institute of Productivity, 2018);

  3. Peng, P. et al. A review on the non-thermal plasma-assisted ammonia synthesis technologies. J. Clean. Prod. 177, 597–609 (2018).

    Article  CAS  Google Scholar 

  4. Marnellos, G. & Stoukides, M. Ammonia synthesis at atmospheric pressure. Science 282, 98–100 (1998).

    Article  CAS  Google Scholar 

  5. Mars, P. & van Krevelen, D. W. Oxidations carried out by means of vanadium oxide catalysts. Chem. Eng. Sci. 3, 41–59 (1954).

    Article  CAS  Google Scholar 

  6. Kitano, M. et al. Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis. Nat. Commun. 6, 6731 (2015).

    Article  CAS  Google Scholar 

  7. Gao, W. et al. Barium hydride-mediated nitrogen transfer and hydrogenation for ammonia synthesis: a case study of cobalt. ACS Catal. 7, 3654–3661 (2017).

    Article  CAS  Google Scholar 

  8. Lan, R., Irvine, J. T. S. & Tao, S. Synthesis of ammonia directly from air and water at ambient temperature and pressure. Sci. Rep. 3, 1145 (2013).

    Article  Google Scholar 

  9. Sik Yun, D. et al. Electrochemical ammonia synthesis from steam and nitrogen using proton conducting yttrium doped barium zirconate electrolyte with silver, platinum, and lanthanum strontium cobalt ferrite electrocatalyst. J. Power Sources 284, 245–251 (2015).

    Article  Google Scholar 

  10. Jeoung, H. et al. Electrochemical synthesis of ammonia from water and nitrogen using a Pt/GDC/Pt Cell. Korean Chem. Eng. Res. 52, 58–62 (2014).

    Article  CAS  Google Scholar 

  11. Suryanto, B. H. R. et al. Rational electrode–electrolyte design for efficient ammonia electrosynthesis under ambient conditions. ACS Energ. Lett. 3, 1219–1224 (2018).

    Article  CAS  Google Scholar 

  12. Licht, S. et al. Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3. Science 345, 637–640 (2014).

    Article  CAS  Google Scholar 

  13. Murakami, T. et al. Electrolytic synthesis of ammonia from water and nitrogen under atmospheric pressure using a boron-doped diamond electrode as a nonconsumable anode. Electrochem. Solid State Lett. 10, E4–E6 (2007).

    Article  CAS  Google Scholar 

  14. Wang, K., Smith, D. & Zheng, Y. Electron-driven heterogeneous catalytic synthesis of ammonia: current states and perspective. Carbon Resour. Conver. 1, 2–31 (2018).

    Article  Google Scholar 

  15. Harris, D. C. in Quantitative Chemical Analysis (W. H. Freeman, 2010).

  16. Tao, H. et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 5, 204–214 (2019).

    Article  CAS  Google Scholar 

  17. Suo, L. et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    Article  CAS  Google Scholar 

  18. Zhang, L. et al. A theoretical study of the effect of a non-aqueous proton donor on electrochemical ammonia synthesis. Phys. Chem. Chem. Phys. 20, 4982–4989 (2018).

    Article  CAS  Google Scholar 

  19. Joshi, A. V. & Bhavaraju, S. Ammonia synthesis using lithium ion conductive membrane. US8916123 patent 8,916,123 (2018).

  20. McEnaney, J. M. et al. Ammonia synthesis from N2 and H2O using a lithium cycling electrification strategy at atmospheric pressure. Energ. Environ. Sci. 10, 1621–1630 (2017).

    Article  CAS  Google Scholar 

  21. Kim, K. et al. Electrochemical synthesis of ammonia from water and nitrogen: a lithium-mediated approach using lithium-ion conducting glass ceramics. ChemSusChem 11, 120–124 (2018).

    Article  CAS  Google Scholar 

  22. Lan, R., Alkhazmi, K. A., Amar, I. A. & Tao, S. Synthesis of ammonia directly from wet air using Sm0.6Ba0.4Fe0.8Cu0.2O3−δ as the catalyst. Faraday Discuss. 182, 353–363 (2015).

    Article  CAS  Google Scholar 

  23. Bicer, Y. & Dincer, I. Performance assessment of electrochemical ammonia synthesis using photoelectrochemically produced hydrogen. Int. J. Energ. Res. 41, 1987–2000 (2017).

    Article  CAS  Google Scholar 

  24. Vasileiou, E. et al. Electrochemical enhancement of ammonia synthesis in a BaZr0.7Ce0.2Y0.1O2.9 solid electrolyte cell. Solid State Ion. 288, 357–362 (2016).

    Article  CAS  Google Scholar 

  25. Hawtof, R. et al. Catalyst-free, highly selective synthesis of ammonia from nitrogen and water by a plasma electrolytic system. Sci. Adv. 5, eaat5778 (2019).

    Article  Google Scholar 

  26. Murakami, T., Nohira, T., Ogata, Y. H. & Ito, Y. Electrolytic ammonia synthesis in molten salts under atmospheric pressure using methane as a hydrogen source. Electrochem. Solid State Lett. 8, D12–D14 (2005).

    Article  CAS  Google Scholar 

  27. Benner, J., van Lieshout, M. & Croezen, H. Identifying Breakthrough Technologies for the Production of Basic Chemicals (University of Delft, 2012).

  28. Pfromm, P. H. Towards sustainable agriculture: Fossil-free ammonia. J. Renew. Sustain. Energ. 9, 034702 (2017).

    Article  Google Scholar 

  29. Refuel. ARPA-E (2016).

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Grigorii Soloveichik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soloveichik, G. Electrochemical synthesis of ammonia as a potential alternative to the Haber–Bosch process. Nat Catal 2, 377–380 (2019).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing