Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Misconceptions and challenges in methane-to-methanol over transition-metal-exchanged zeolites

Abstract

Direct methane functionalization and, in particular, the selective partial oxidation to methanol, remains an eminent challenge and a field of competitive research. The conversion of methane to methanol over transition-metal-containing zeolites using molecular oxygen is a promising and extensively studied process. Herein, we scrutinize some oft-cited assumptions in this topic—which include the labelling of the process as biomimetic, the debate regarding the industrial viability of direct methane-oxidation systems and the claim that methane is difficult to activate—and delineate the extent to which these are scientifically robust. We highlight both the merits and pitfalls of such statements and point out the hazards associated with their improper use. By examining these misconceptions, we build an outlook for future research, highlighting the need to optimize materials and process conditions for the stepwise approach and to further explore catalytic processes that explicitly employ strategies for the preservation of methanol.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Methanol selectivity versus methane conversion.
Fig. 2: Enzymatic versus zeolite-based partial oxidation of methane.
Fig. 3: Evaluation of the established approaches for methane-oxidation using a triangular model.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper.

References

  1. Nisbet, E. G., Dlugokencky, E. J. & Bousquet, P. Methane on the rise—again. Science 343, 493–495 (2014).

    CAS  PubMed  Google Scholar 

  2. Alvarez-Galvan, M. C. et al. Direct methane conversion routes to chemicals and fuels. Cataly. Today 171, 15–23 (2011).

    CAS  Google Scholar 

  3. Tang, P., Zhu, Q., Wu, Z. & Ma, D. Methane activation: the past and future. Energy & Environ. Science 7, 2580–2591 (2014).

    CAS  Google Scholar 

  4. Choudhary, T. V. & Choudhary, V. R. Energy‐efficient syngas production through catalytic oxy‐methane reforming reactions. Angew. Chem. Int. Ed. 47, 1828–1847 (2008).

  5. Dybkjær, I. & Aasberg‐Petersen, K. Synthesis gas technology large‐scale applications. Can. J. Chem. Eng. 94, 607–612 (2016).

    Google Scholar 

  6. Foster, N. R. Direct catalytic oxidation of methane to methanol—a review. Appl. Catal. 19, 1–11 (1985).

    CAS  Google Scholar 

  7. Lange, J. P., De Jong, K. P., Ansorge, J. & Tijm, P. J. A. in Studies in Surface Science and Catalysis Vol. 107 81–86 (Elsevier, 1997).

  8. Ahlquist, M., Nielsen, R. J., Periana, R. A. & Goddard, W. A. III. Product protection, the key to developing high performance methane selective oxidation catalysts. J. Am. Chem. Soc. 131, 17110–17115 (2009).

  9. Hammond, C., Conrad, S. & Hermans, I. Oxidative methane upgrading. ChemSusChem 5, 1668–1686 (2012).

    CAS  PubMed  Google Scholar 

  10. Kondratenko, E. V. et al. Methane conversion into different hydrocarbons or oxygenates: current status and future perspectives in catalyst development and reactor operation. Catal. Sci. Technol. 7, 366–381 (2017).

    CAS  Google Scholar 

  11. Ravi, M., Ranocchiari, M. & van Bokhoven, J. A. The direct catalytic oxidation of methane to methanol-a critical assessment. Angew. Chem. Int. Ed. 56, 16464–16483 (2017).

  12. Kulkarni, A. R., Zhao, Z.-J., Siahrostami, S., Nørskov, J. K. & Studt, F. Cation-exchanged zeolites for the selective oxidation of methane to methanol. Catal. Sci. Technol. 8, 114–123 (2018).

    CAS  Google Scholar 

  13. Lance, D. & Elworthy, E. G. Process for the manufacture of methyl-alcohol from methane. French patent 352,687 (1905).

  14. Periana, R. A. et al. A mercury-catalyzed, high-yield system for the oxidation of methane to methanol. Science 259, 340–343 (1993).

    CAS  PubMed  Google Scholar 

  15. Periana, R. A. et al. Platinum catalysts for the high-yield oxidation of methane to a methanol derivative. Science 280, 560–564 (1998).

    CAS  PubMed  Google Scholar 

  16. Muehlhofer, M., Strassner, T. & Herrmann, W. A. New catalyst systems for the catalytic conversion of methane into methanol. Angew. Chem. Int. Ed. 41, 1745–1747 (2002).

  17. Hashiguchi, B. G. et al. Main-group compounds selectively oxidize mixtures of methane, ethane, and propane to alcohol esters. Science 343, 1232–1237 (2014).

    CAS  PubMed  Google Scholar 

  18. Ravi, M. & van Bokhoven, J. A. Homogeneous copper‐catalyzed conversion of methane to methyl trifluoroacetate in high yield at low pressure. ChemCatChem 10, 2383–2386 (2018).

    CAS  Google Scholar 

  19. Hammond, C. et al. Direct catalytic conversion of methane to methanol in an aqueous medium by using copper‐promoted Fe‐ZSM‐5. Angew. Chem. Int. Ed. 51, 5129–5133 (2012).

  20. Shan, J., Li, M., Allard, L. F., Lee, S. & Flytzani-Stephanopoulos, M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 551, 605–608 (2017).

    CAS  PubMed  Google Scholar 

  21. Mehta, P. K., Mishra, S. & Ghose, T. K. Methanol accumulation by resting cells of Methylosinus trichosporium (I). J. Gen. Appl. Microbiol. 33, 221–229 (1987).

    CAS  Google Scholar 

  22. Sugimori, D., Takeguchi, M. & Okura, I. Biocatalytic methanol production from methane with methylosinus trichosporium OB3b: an approach to improve methanol accumulation. Biotechnol. Lett. 17, 783–784 (1995).

    CAS  Google Scholar 

  23. Kim, H. G., Han, G. H. & Kim, S. W. Optimization of lab scale methanol production by methylosinus trichosporium OB3b. Biotechnol. Bioprocess Eng. 15, 476–480 (2010).

    CAS  Google Scholar 

  24. Duan, C., Luo, M. & Xing, X. High-rate conversion of methane to methanol by methylosinus trichosporium OB3b. Bioresour. Technol. 102, 7349–7353 (2011).

    CAS  PubMed  Google Scholar 

  25. Sushkevich, V. L., Palagin, D., Ranocchiari, M. & van Bokhoven, J. A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 356, 523–527 (2017).

    CAS  PubMed  Google Scholar 

  26. Wang, X. et al. Copper-modified zeolites and silica for conversion of methane to methanol. Catalysts 8, 545 (2018).

    Google Scholar 

  27. Narsimhan, K., Iyoki, K., Dinh, K. & Román-Leshkov, Y. Catalytic oxidation of methane into methanol over copper-exchanged zeolites with oxygen at low temperature. ACS Cent. Sci. 2, 424–429 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Starokon, E. V., Parfenov, M. V., Pirutko, L. V., Abornev, S. I. & Panov, G. I. Room-temperature oxidation of methane by α-oxygen and extraction of products from the FeZSM-5 surface. J. Phys. Chem. C. 115, 2155–2161 (2011).

    CAS  Google Scholar 

  29. Starokon, E. V. et al. Oxidation of methane to methanol on the surface of FeZSM-5 zeolite. J. Catal. 300, 47–54 (2013).

    CAS  Google Scholar 

  30. Groothaert, M. H., Smeets, P. J., Sels, B. F., Jacobs, P. A. & Schoonheydt, R. A. Selective oxidation of methane by the bis (μ-oxo) dicopper core stabilized on ZSM-5 and mordenite zeolites. J. Am. Chem. Soc. 127, 1394–1395 (2005).

    CAS  PubMed  Google Scholar 

  31. Beznis, N. V., Weckhuysen, B. M. & Bitter, J. H. Cu-ZSM-5 zeolites for the formation of methanol from methane and oxygen: Probing the active sites and spectator species. Catal. Lett. 138, 14–22 (2010).

    CAS  Google Scholar 

  32. Alayon, E. M., Nachtegaal, M., Ranocchiari, M. & van Bokhoven, J. A. Catalytic conversion of methane to methanol over Cu–mordenite. Chem. Commun. 48, 404–406 (2012).

    CAS  Google Scholar 

  33. Vanelderen, P. et al. Spectroscopic definition of the copper active sites in mordenite: selective methane oxidation. J. Am. Chem. Soc. 137, 6383–6392 (2015).

    CAS  PubMed  Google Scholar 

  34. Zhao, Z.-J., Kulkarni, A., Vilella, L., Norskov, J. K. & Studt, F. Theoretical insights into the selective oxidation of methane to methanol in copper-exchanged mordenite. ACS Catal. 6, 3760–3766 (2016).

    CAS  Google Scholar 

  35. Li, G. et al. Stability and reactivity of copper oxo-clusters in ZSM-5 zeolite for selective methane oxidation to methanol. J. Catal. 338, 305–312 (2016).

    CAS  Google Scholar 

  36. Sheppard, T., Daly, H., Goguet, A. & Thompson, J. M. Improved efficiency for partial oxidation of methane by controlled copper deposition on surface‐modified ZSM‐5. ChemCatChem 8, 562–570 (2016).

    CAS  PubMed  Google Scholar 

  37. Grundner, S. et al. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nat. Commun. 6, 7546 (2015).

    PubMed  Google Scholar 

  38. Yumura, T., Hirose, Y., Wakasugi, T., Kuroda, Y. & Kobayashi, H. Roles of water molecules in modulating the reactivity of dioxygen-bound Cu-ZSM-5 toward methane: a theoretical prediction. ACS Catal. 6, 2487–2495 (2016).

    CAS  Google Scholar 

  39. Marturano, P., Drozdová, L., Kogelbauer, A. & Prins, R. Fe/ZSM-5 prepared by sublimation of FeCl 3: The structure of the Fe species as determined by IR, 27 Al MAS NMR, and EXAFS spectroscopy. J. Catal. 192, 236–247 (2000).

    CAS  Google Scholar 

  40. Battiston, A. A. et al. Evolution of Fe species during the synthesis of over-exchanged Fe/ZSM5 obtained by chemical vapor deposition of FeCl 3. J. Catal. 213, 251–271 (2003).

    CAS  Google Scholar 

  41. Groothaert, M. H., van Bokhoven, J. A., Battiston, A. A., Weckhuysen, B. M. & Schoonheydt, R. A. Bis (μ-oxo) dicopper in Cu-ZSM-5 and its role in the decomposition of NO: a combined in situ XAFS, UV-Vis-Near-IR, and kinetic study. J. Am. Chem. Soc. 125, 7629–7640 (2003).

    CAS  PubMed  Google Scholar 

  42. Vanelderen, P. et al. Cu-ZSM-5: A biomimetic inorganic model for methane oxidation. J. Catal. 284, 157–164 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Snyder, B. E. R., Bols, M. L., Schoonheydt, R. A., Sels, B. F. & Solomon, E. I. Iron and copper active sites in zeolites and their correlation to metalloenzymes. Chem. Rev. 118, 2718–2768 (2017).

    PubMed  Google Scholar 

  44. Rosenzweig, A. C., Frederick, C. A. & Lippard, S. J. Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane. Nature 366, 537–543 (1993).

    CAS  PubMed  Google Scholar 

  45. Sobolev, V. I., Dubkov, K. A., Panna, O. V. & Panov, G. I. Selective oxidation of methane to methanol on a FeZSM-5 surface. Catal. Today 24, 251–252 (1995).

    CAS  Google Scholar 

  46. Tomkins, P. et al. Isothermal cyclic conversion of methane into methanol over copper-exchanged zeolite at low temperature. Angew. Chem. Int. Ed. 55, 5467–5471 (2016).

    CAS  PubMed  Google Scholar 

  47. Lee, S. J., McCormick, M. S., Lippard, S. J. & Cho, U.-S. Control of substrate access to the active site in methane monooxygenase. Nature 494, 380–384 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lipscomb, J. D. Biochemistry of the soluble methane monooxygenase. Ann. Rev. Microbiol. 48, 371–399 (1994).

    CAS  Google Scholar 

  49. Borfecchia, E. et al. Evolution of active sites during selective oxidation of methane to methanol over Cu-CHA and Cu-MOR zeolites as monitored by operando XAS. Catal. Today (2018).

  50. Dalton, H., Smith, D. D. S. & Pilkington, S. J. Towards a unified mechanism of biological methane oxidation. FEMS Microbiol. Rev. 7, 201–207 (1990).

    Google Scholar 

  51. Colby, J. & Dalton, H. Resolution of the methane mono-oxygenase of methylococcus capsulatus (Bath) into three components. Purification and properties of component C, a flavoprotein. Biochem. J. 171, 461–468 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Friedle, S., Reisner, E. & Lippard, S. J. Current challenges of modeling diiron enzyme active sites for dioxygen activation by biomimetic synthetic complexes. Chem. Soc. Rev. 39, 2768–2779 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Tinberg, C. E. & Lippard, S. J. Dioxygen activation in soluble methane monooxygenase. Acc. Chem. Res. 44, 280–288 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Snyder, B. E. R., Vanelderen, P., Schoonheydt, R. A., Sels, B. F. & Solomon, E. I. Second-sphere effects on methane hydroxylation in Cu-zeolites. J. Am. Chem. Soc. 140, 9236–9243 (2018).

    CAS  PubMed  Google Scholar 

  55. Dinh, K. T. et al. Viewpoint on the partial oxidation of methane to methanol using Cu-and Fe-exchanged zeolites. ACS Catal. 8, 8306–8313 (2018).

    CAS  Google Scholar 

  56. Solomon, E. I. et al. Copper active sites in biology. Chem. Rev. 114, 3659–3853 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Beznis, N. V., Van Laak, A. N. C., Weckhuysen, B. M. & Bitter, J. H. Oxidation of methane to methanol and formaldehyde over Co–ZSM-5 molecular sieves: tuning the reactivity and selectivity by alkaline and acid treatments of the zeolite ZSM-5 agglomerates. Microporous Mesoporous Mat. 138, 176–183 (2011).

    CAS  Google Scholar 

  58. Grundner, S., Luo, W., Sanchez-Sanchez, M. & Lercher, J. A. Synthesis of single-site copper catalysts for methane partial oxidation. Chem. Commun. 52, 2553–2556 (2016).

    CAS  Google Scholar 

  59. Ipek, B. & Lobo, R. F. Catalytic conversion of methane to methanol on Cu-SSZ-13 using N2O as oxidant. Chem. Commun. 52, 13401–13404 (2016).

  60. Parfenov, M. V., Starokon, E. V., Pirutko, L. V. & Panov, G. I. Quasicatalytic and catalytic oxidation of methane to methanol by nitrous oxide over FeZSM-5 zeolite. J. Catal. 318, 14–21 (2014).

    CAS  Google Scholar 

  61. Bozbag, S. E. et al. Methane to methanol over copper mordenite: yield improvement through multiple cycles and different synthesis techniques. Catal. Sci. Technol. 6, 5011–5022 (2016).

    CAS  Google Scholar 

  62. Tan, S. H. & Barton, P. I. Optimal dynamic allocation of mobile plants to monetize associated or stranded natural gas, part I: Bakken shale play case study. Energy 93, 1581–1594 (2015).

    Google Scholar 

  63. Conley, B. L. et al. Design and study of homogeneous catalysts for the selective, low temperature oxidation of hydrocarbons. J. Mol. Catal. A: Chem. 251, 8–23 (2006).

    CAS  Google Scholar 

  64. Zhang, Y., Sunarso, J., Liu, S. & Wang, R. Current status and development of membranes for CO2/CH4 separation: A review. Int. J. Greenh. Gas. Con. 12, 84–107 (2013).

    CAS  Google Scholar 

  65. Morigami, Y., Kondo, M., Abe, J., Kita, H. & Okamoto, K. The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane. Sep. Purif. Technol. 25, 251–260 (2001).

    CAS  Google Scholar 

  66. Liu, Q., Noble, R. D., Falconer, J. L. & Funke, H. H. Organics/water separation by pervaporation with a zeolite membrane. J. Membr. Sci. 117, 163–174 (1996).

    CAS  Google Scholar 

  67. Won, W., Feng, X. & Lawless, D. Pervaporation with chitosan membranes: separation of dimethyl carbonate/methanol/water mixtures. J. Membr. Sci. 209, 493–508 (2002).

    CAS  Google Scholar 

  68. Sheppard, T., Hamill, C. D., Goguet, A., Rooney, D. W. & Thompson, J. M. A low temperature, isothermal gas-phase system for conversion of methane to methanol over Cu–ZSM-5. Chem. Commun. 50, 11053–11055 (2014).

    CAS  Google Scholar 

  69. Wulfers, M. J., Teketel, S., Ipek, B. & Lobo, R. F. Conversion of methane to methanol on copper-containing small-pore zeolites and zeotypes. Chem. Commun. 51, 4447–4450 (2015).

    CAS  Google Scholar 

  70. Woertink, J. S. et al. A [Cu2O] 2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol. Proc. Natl Acad. Sci. 106, 18908–18913 (2009).

    CAS  Google Scholar 

  71. Sushkevich, V. L., Palagin, D. & van Bokhoven, J. A. Effect of active sites structure on activity of copper mordenite in aerobic and anaerobic conversion of methane to methanol. Angew. Chem. Int. Ed. 57, 8906–8910 (2018).

  72. Smeets, P. J., Groothaert, M. H. & Schoonheydt, R. A. Cu based zeolites: A UV–vis study of the active site in the selective methane oxidation at low temperatures. Catal. Today 110, 303–309 (2005).

    CAS  Google Scholar 

  73. Borfecchia, E. et al. Revisiting the nature of Cu sites in the activated Cu-SSZ-13 catalyst for SCR reaction. Chem. Sci. 6, 548–563 (2015).

    CAS  PubMed  Google Scholar 

  74. Kulkarni, A. R., Zhao, Z.-J., Siahrostami, S., Nørskov, J. K. & Studt, F. Monocopper active site for partial methane oxidation in Cu-exchanged 8MR Zeolites. ACS Catal. 6, 6531–6536 (2016).

    CAS  Google Scholar 

  75. Palagin, D., Knorpp, A. J., Pinar, A. B., Ranocchiari, M. & van Bokhoven, J. A. Assessing the relative stability of copper oxide clusters as active sites of a CuMOR zeolite for methane to methanol conversion: size matters? Nanoscale 9, 1144–1153 (2017).

    CAS  PubMed  Google Scholar 

  76. Ipek, B. et al. Formation of [Cu2O2] 2+ and [Cu2O] 2+ toward C–H Bond Activation in Cu-SSZ-13 and Cu-SSZ-39. ACS Catal. 7, 4291–4303 (2017).

    CAS  Google Scholar 

  77. Kwak, J. H., Zhu, H., Lee, J. H., Peden, C. H. F. & Szanyi, J. Two different cationic positions in Cu-SSZ-13? Chem. Commun. 48, 4758–4760 (2012).

    CAS  Google Scholar 

  78. Paolucci, C. et al. Catalysis in a cage: condition-dependent speciation and dynamics of exchanged Cu cations in SSZ-13 zeolites. J. Am. Chem. Soc. 138, 6028–6048 (2016).

    CAS  PubMed  Google Scholar 

  79. Beale, A. M., Lezcano-Gonzalez, I., Slawinksi, W. A. & Wragg, D. S. Correlation between Cu ion migration behaviour and deNO x activity in Cu-SSZ-13 for the standard NH 3-SCR reaction. Chem. Commun. 52, 6170–6173 (2016).

    CAS  Google Scholar 

  80. Newton, M. A. et al. On the mechanism underlying the direct conversion of methane to methanol by copper hosted in zeolites; braiding Cu K-edge XANES and reactivity studies. J. Am. Chem. Soc. 140, 10090–10093 (2018).

    CAS  PubMed  Google Scholar 

  81. Narsimhan, K. Catalytic, low temperature oxidation of methane into methanol over copper-exchanged zeolites PhD thesis, Massachusetts Inst. of Technol. (2017).

  82. Mahyuddin, M. H., Staykov, A., Shiota, Y. & Yoshizawa, K. Direct conversion of methane to methanol by metal-exchanged ZSM-5 zeolite (Metal= Fe, Co, Ni, Cu). ACS Catal. 6, 8321–8331 (2016).

    CAS  Google Scholar 

  83. Mahyuddin, M. H., Staykov, A., Shiota, Y., Miyanishi, M. & Yoshizawa, K. Roles of zeolite confinement and Cu–O–Cu angle on the direct conversion of methane to methanol by [Cu2 (μ-O)] 2+-exchanged AEI, CHA, AFX, and MFI zeolites. ACS Catal. 7, 3741–3751 (2017).

    CAS  Google Scholar 

  84. Bozbag, S. E. et al. Direct stepwise oxidation of methane to methanol over Cu-SiO2. ACS Catal. 8, 5721–5731 (2018).

    CAS  Google Scholar 

  85. Ikuno, T. et al. Methane oxidation to methanol catalyzed by Cu-Oxo clusters stabilized in NU-1000 metal–organic framework. J. Am. Chem. Soc. 139, 10294–10301 (2017).

    CAS  PubMed  Google Scholar 

  86. Le, H. V. et al. Stepwise methane‐to‐methanol conversion on CuO/SBA‐15. Chem.: Eur. J. 24, 12592–12599 (2018).

    CAS  Google Scholar 

  87. Kalamaras, C. et al. Selective oxidation of methane to methanol over Cu-and Fe-exchanged zeolites: the effect of Si/Al molar ratio. Catal. Lett. 146, 483–492 (2016).

    CAS  Google Scholar 

  88. Arndtsen, B. A., Peterson, T. H. & Mobley, T. A. Selective intermolecular carbon-hydrogen bond activation by synthetic metal complexes in homogeneous solution. Acc. Chem. Res. 28, 154–162 (1995).

    CAS  Google Scholar 

  89. Labinger, J. A. Methane activation in homogeneous systems. Fuel Process. Technol. 42, 325–338 (1995).

    CAS  Google Scholar 

  90. Latimer, A. A., Kakekhani, A., Kulkarni, A. R. & Nørskov, J. K. Direct methane to methanol: the selectivity–conversion limit and design strategies. ACS Catal. 8, 6894–6907 (2018).

    CAS  Google Scholar 

  91. Liu, X., Ryabenkova, Y. & Conte, M. Catalytic oxygen activation versus autoxidation for industrial applications: a physicochemical approach. Phys. Chem. Chem. Phys. 17, 715–731 (2015).

    CAS  PubMed  Google Scholar 

  92. Olivos-Suarez, A. I. et al. Strategies for the direct catalytic valorization of methane using heterogeneous catalysis: challenges and opportunities. ACS Catal. 6, 2965–2981 (2016).

    CAS  Google Scholar 

  93. Roduner, E. et al. Selective catalytic oxidation of C–H Bonds with molecular oxygen. ChemCatChem 5, 82–112 (2013).

    CAS  Google Scholar 

  94. Zuo, Z., Ramírez, P. J., Senanayake, S. D., Liu, P. & Rodriguez, J. A. Low-temperature conversion of methane to methanol on CeO x/Cu2O catalysts: water controlled activation of the C–H bond. J. Am. Chem. Soc. 138, 13810–13813 (2016).

    CAS  PubMed  Google Scholar 

  95. Tomkins, P. et al. Increasing the activity of copper exchanged mordenite in the direct isothermal conversion of methane to methanol by Pt and Pd doping. Chem. Sci. 10, 167–171 (2019).

    CAS  PubMed  Google Scholar 

  96. Wang, G., Huang, L., Chen, W., Zhou, J. & Zheng, A. Rationally designing mixed Cu–(μ-O)–M (M= Cu, Ag, Zn, Au) centers over zeolite materials with high catalytic activity towards methane activation. Phys. Chem. Chem. Phys. 20, 26522–26531 (2018).

    CAS  PubMed  Google Scholar 

  97. Park, D. & Lee, J. Biological conversion of methane to methanol. Korean J. Chem. Eng. 30, 977–987 (2013).

    CAS  Google Scholar 

  98. Huang, S.-P., Shiota, Y. & Yoshizawa, K. DFT study of the mechanism for methane hydroxylation by soluble methane monooxygenase (sMMO): effects of oxidation state, spin state, and coordination number. Dalton Trans. 42, 1011–1023 (2013).

    CAS  PubMed  Google Scholar 

  99. Da Silva, J. C. S., Pennifold, R. C. R., Harvey, J. N. & Rocha, W. R. A radical rebound mechanism for the methane oxidation reaction promoted by the dicopper center of a pMMO enzyme: a computational perspective. Dalton Trans. 45, 2492–2504 (2016).

    PubMed  Google Scholar 

  100. Smeets, P. J. et al. Oxygen precursor to the reactive intermediate in methanol synthesis by Cu-ZSM-5. J. Am. Chem. Soc. 132, 14736–14738 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Markovits, M. A. C., Jentys, A., Tromp, M., Sanchez-Sanchez, M. & Lercher, J. A. Effect of location and distribution of Al sites in ZSM-5 on the formation of Cu-Oxo clusters active for direct conversion of methane to methanol. Top. Catal. 59, 1554–1563 (2016).

    CAS  Google Scholar 

  102. Pappas, D. K. et al. Methane to methanol: structure–activity relationships for Cu-CHA. J. Am. Chem. Soc. 139, 14961–14975 (2017).

    CAS  PubMed  Google Scholar 

  103. Le, H. V. et al. Solid-state ion-exchanged Cu/mordenite catalysts for the direct conversion of methane to methanol. ACS Catal. 7, 1403–1412 (2017).

    CAS  Google Scholar 

  104. Kim, Y., Kim, T. Y., Lee, H. & Yi, J. Distinct activation of Cu-MOR for direct oxidation of methane to methanol. Chem. Commun. 53, 4116–4119 (2017).

    CAS  Google Scholar 

  105. Pappas, D. K. et al. The nuclearity of the active site for methane to methanol conversion in Cu-mordenite: a quantitative assessment. J. Am. Chem. Soc. 140, 15270–15278 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the ESI platform, Paul Scherrer Institute and ETH Zurich for financial support. DP is grateful for the Swiss National Supercomputing Centre for providing the computational facilities.

Author information

Authors and Affiliations

Authors

Contributions

J.A.vB devised the overall idea of the perspective and M.Rav. wrote the manuscript in close consultation with all the other authors. All authors contributed insights, provided feedback and edited the manuscript. V.S gave specific inputs on aspects of industrial viability, kinetic measurements and benchmarking as discussed in the manuscript. A.J.K. and M.A.N added to the discussion on the biomimetic descriptor and compiled data from literature for computing the space–time yield under Table 1. M.A.N., A.J.K. and A.B.P. contributed to sections of the manuscript that deal with X-ray based techniques and active site structure. D.P. gave inputs on computational methods used in this chemistry. M.Ran. provided inputs on sections of the manuscript that deal with benchmarking and catalytic processes for methane to methanol.

Corresponding author

Correspondence to Jeroen A. van Bokhoven.

Ethics declarations

Competing interests

The authors have no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Data 1

Calculations of maximal methanol selectivity for chemical looping system based on reaction stoichiometry

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravi, M., Sushkevich, V.L., Knorpp, A.J. et al. Misconceptions and challenges in methane-to-methanol over transition-metal-exchanged zeolites. Nat Catal 2, 485–494 (2019). https://doi.org/10.1038/s41929-019-0273-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0273-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing