Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate

Abstract

Upgrading carbon dioxide to high-value multicarbon (C2+) products is one promising avenue for fuel and chemical production. Among all the monometallic catalysts, copper has attracted much attention because of its unique ability to convert CO2 or CO into C2+ products with an appreciable selectivity. Although numerous attempts have been made to synthesize Cu materials that expose the desired facets, it still remains a challenge to obtain high-quality nanostructured Cu catalysts for the electroreduction of CO2/CO. Here we report a facile synthesis of freestanding triangular-shaped two-dimensional Cu nanosheets that selectively expose the (111) surface. In a 2 M KOH electrolyte, the Cu nanosheets exhibit an acetate Faradaic efficiency of 48% with an acetate partial current density up to 131 mA cm−2 in electrochemical CO reduction. Further analysis suggest that the high acetate selectivity is attributed to the suppression of ethylene and ethanol formation, probably due to the reduction of exposed (100) and (110) surfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of Cu nanosheets and Cu nanocubes.
Fig. 2: CO electroreduction performance of Cu nanosheets.
Fig. 3: Comparison of Cu nanosheets with commercial Cu particles in 1 M KOH.
Fig. 4: DFT calculations.

Similar content being viewed by others

Data availability

The data sets generated during and/or analysed during the current study are available from the corresponding authors on reasonable request.

References

  1. Zhuang, T.-T. et al. Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 1, 421–428 (2018).

    Article  Google Scholar 

  2. Ripatti, D. S., Veltman, T. R. & Kanan, M. W. Carbon monoxide gas diffusion electrolysis that produces concentrated C2 products with high single-pass conversion. Joule 3, 240–256 (2018).

    Article  Google Scholar 

  3. Jouny, M., Luc, W. & Jiao, F. High-rate electroreduction of carbon monoxide to multi-carbon products. Nat. Catal. 1, 748–755 (2018).

    Article  Google Scholar 

  4. Jiang, K. et al. Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. Nat. Catal. 1, 111–119 (2018).

    Article  Google Scholar 

  5. Dinh, C.-T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    Article  CAS  Google Scholar 

  6. De Luna, P. et al. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 1, 103–110 (2018).

    Article  Google Scholar 

  7. Ma, S. et al. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu–Pd catalysts with different mixing patterns. J. Am. Chem. Soc. 139, 47–50 (2017).

    Article  CAS  Google Scholar 

  8. Lu, Q. et al. A selective and efficient electrocatalyst for carbon dioxide reduction. Nat. Commun. 5, 3242 (2014).

    Article  Google Scholar 

  9. Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    Article  CAS  Google Scholar 

  10. Jouny, M., Luc, W. & Jiao, F. General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).

    Article  CAS  Google Scholar 

  11. Lv, J.-J. et al. A highly porous copper electrocatalyst for carbon dioxide reduction. Adv. Mater. 30, 1803111 (2018).

    Article  Google Scholar 

  12. Raciti, D., Livi, K. J. & Wang, C. Highly dense Cu nanowires for low-overpotential CO2 reduction. Nano Lett. 15, 6829–6835 (2015).

    Article  CAS  Google Scholar 

  13. Hori, Y., Wakebe, H., Tsukamoto, T. & Koga, O. Electrocatalytic process of Co selectivity in electrochemical reduction of CO2 at metal-electrodes in aqueous-media. Electrochim. Acta 39, 1833–1839 (1994).

    Article  CAS  Google Scholar 

  14. Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012).

    Article  CAS  Google Scholar 

  15. Kuhl, K. P. et al. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 136, 14107–14113 (2014).

    Article  CAS  Google Scholar 

  16. Hori, Y., Takahashi, R., Yoshinami, Y. & Murata, A. Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B 101, 7075–7081 (1997).

    Article  CAS  Google Scholar 

  17. Yang, H.-J., He, S.-Y., Chen, H.-L. & Tuan, H.-Y. Monodisperse copper nanocubes: synthesis, self-assembly, and large-area dense-packed films. Chem. Mater. 26, 1785–1793 (2014).

    Article  CAS  Google Scholar 

  18. Jin, M. et al. Shape-controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as a capping agent. Angew. Chem. Int. Ed. 50, 10560–10564 (2011).

    Article  CAS  Google Scholar 

  19. Huang, J. F. et al. Potential-induced nanoclustering of metallic catalysts during electrochemical CO2 reduction. Nat. Commun. 9, 3117 (2018).

    Article  Google Scholar 

  20. Guo, H. Z. et al. Shape-selective formation of monodisperse copper nanospheres and nanocubes via disproportionation reaction route and their optical properties. J. Phys. Chem. C 118, 9801–9808 (2014).

    Article  CAS  Google Scholar 

  21. Salzemann, C., Urban, J., Lisiecki, I. & Pileni, M. P. Characterization and growth process of copper nanodisks. Adv. Funct. Mater. 15, 1277–1284 (2005).

    Article  CAS  Google Scholar 

  22. Tao, F. et al. Break-up of stepped platinum catalyst surfaces by high CO coverage. Science 327, 850–853 (2010).

    Article  CAS  Google Scholar 

  23. Tao, F. et al. Reaction-driven restructuring of Rh–Pd and Pt–Pd core–shell nanoparticles. Science 322, 932–934 (2008).

    Article  CAS  Google Scholar 

  24. Verma, S. et al. Insights into the low overpotential electroreduction of CO2 to CO on a supported gold catalyst in an alkaline flow electrolyzer. ACS Energy Lett. 3, 193–198 (2018).

    Article  CAS  Google Scholar 

  25. Zhuang, T.-T. et al. Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nat. Catal. 1, 946–951 (2018).

    Article  Google Scholar 

  26. Ma, S. C. et al. One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. J. Power Sources 301, 219–228 (2016).

    Article  CAS  Google Scholar 

  27. Weekes, D. M., Salvatore, D. A., Reyes, A., Huang, A. X. & Berlinguette, C. P. Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 51, 910–918 (2018).

    Article  CAS  Google Scholar 

  28. Dunwell, M., Luc, W., Yan, Y. S., Jiao, F. & Xu, B. J. Understanding surface-mediated electrochemical reactions: CO2 reduction and beyond. ACS Catal. 8, 8121–8129 (2018).

    Article  CAS  Google Scholar 

  29. Lum, Y. W., Cheng, T., Goddard, W. A. & Ager, J. W. Electrochemical CO reduction builds solvent water into oxygenate products. J. Am. Chem. Soc. 140, 9337–9340 (2018).

    Article  CAS  Google Scholar 

  30. Liu, X. Y. et al. pH effects on the electrochemical reduction of CO2 towards C2 products on stepped copper. Nat. Commun. 10, 32 (2019).

    Article  Google Scholar 

  31. Wang, L. et al. Electrochemical carbon monoxide reduction on polycrystalline copper: effects of potential, pressure, and pH on selectivity toward multicarbon and oxygenated products. ACS Catal. 8, 7445–7454 (2018).

    Article  CAS  Google Scholar 

  32. Strmcnik, D. et al. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 5, 300–306 (2013).

    Article  CAS  Google Scholar 

  33. Raciti, D. et al. Low-overpotential electroreduction of carbon monoxide using copper nanowires. ACS Catal. 7, 4467–4472 (2017).

    Article  CAS  Google Scholar 

  34. Droog, J. M. M. & Schlenter, B. Oxygen electrosorption on copper single-crystal electrodes in sodium-hydroxide solution. J. Electroanal. Chem. 112, 387–390 (1980).

    Article  CAS  Google Scholar 

  35. Schouten, K. J. P., Gallent, E. P. & Koper, M. T. M. Structure sensitivity of the electrochemical reduction of carbon monoxide on copper single crystals. ACS Catal. 3, 1292–1295 (2013).

    Article  CAS  Google Scholar 

  36. Hahn, C. et al. Engineering Cu surfaces for the electrocatalytic conversion of CO2: controlling selectivity toward oxygenates and hydrocarbons. Proc. Natl Acad. Sci. USA 114, 5918–5923 (2017).

    Article  CAS  Google Scholar 

  37. Cheng, T., Xiao, H. & Goddard, W. A. Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K. Proc. Natl Acad. Sci. USA 114, 1795–1800 (2017).

    Article  CAS  Google Scholar 

  38. Cheng, T., Xiao, H. & Goddard, W. A. Nature of the active sites for CO reduction on copper nanoparticles; suggestions for optimizing performance. J. Am. Chem. Soc. 139, 11642–11645 (2017).

    Article  CAS  Google Scholar 

  39. Xiao, H., Cheng, T., Goddard, W. A. & Sundararaman, R. Mechanistic explanation of the pH dependence and onset potentials for hydrocarbon products from electrochemical reduction of CO on Cu(111). J. Am. Chem. Soc. 138, 483–486 (2016).

    Article  CAS  Google Scholar 

  40. Calle-Vallejo, F. & Koper, M. T. M. Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew. Chem. Int. Ed. 52, 7282–7285 (2013).

    Article  CAS  Google Scholar 

  41. Chen, C. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014).

    Article  CAS  Google Scholar 

  42. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  Google Scholar 

  43. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  44. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  45. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  46. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  47. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  48. Scott, A. P. & Radom, L. Harmonic vibrational frequencies: an evaluation of Hartree−Fock, Møller−Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J. Phys. Chem. 100, 16502–16513 (1996).

    Article  CAS  Google Scholar 

  49. Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010).

    Article  CAS  Google Scholar 

  50. Henkelman, G., Uberuaga, B. P. & Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is supported by the Department of Energy (USA) under Award no. DE-FE0029868 and the National Natural Science Foundation of China under Award nos 51601030 and 21773023. F.J., W.L., J.-J.L., M.J. and B.H.K. also thank the National Science Foundation Faculty Early Career Development program (Award no. CBET-1350911). Y.K. and X.F. acknowledge the support from International Institute for Nanotechnology (IIN) and Institute for Sustainability and Energy (ISEN) at Northwestern University. The theoretical calculation is supported by the Welch Foundation (Grant no. F-1959-20180324) and the startup grant from UT Austin, and used computational resources sponsored by the DOE’s Office of Energy Efficiency and Renewable Energy and located at the National Renewable Energy Laboratory, and the Texas Advanced Computing Center (TACC) at UT Austin. This work made use of the Electron Probe Instrumentation Center (EPIC) facility of Northwestern University’s Atomic and Nanoscale Characterization Experimental Center (NUANCE), which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205); the Materials Research Science and Engineering Centers (MRSEC) program (NSF DMR-1121262) at the Materials Research Center; the IIN. This work made use of the J.B. Cohen X-Ray Diffraction Facility supported by MRSEC and SHyNE. The authors acknowledge D. Su (Brookhaven National Laboratory), X. Ye (Indiana University) and A. Petford-Long (Northwestern University) for help in the discussion. This research used resources at the 8-ID Beamline of the National Synchrotron Light Source II, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract no. DE-SC0012704. The authors acknowledge E. Stavitski (8-ID Beamline, NSLS-II, Brookhaven National Laboratory) for assistance in the XAS measurements.

Author information

Authors and Affiliations

Authors

Contributions

Y.K. and F.J. conceived the idea and supervised the project. X.F. designed the catalyst and synthesized the Cu nanomaterials. W.L. performed the electrocatalytic studies. Y.K., X.F., W.L., Y.L. and F.J. analysed the data and drafted the manuscript. J.-J.L. and M.J, performed the electrocatalytic study on the Cu nanoparticles and micrometre-sized particles. M.J. designed the operando XAS flow-cell electrolyser, and M.J., B.H.K. and W.L. performed the XAS study. Y.X., X.H. and J.W. facilitated the electron microscopic work. Q.T. assisted the AFM measurement. J.S. and Y.L. performed the computational modelling studies. All the authors contributed to the discussion of the results and manuscript preparation. W.L. and X.F. contributed equally to this work.

Corresponding authors

Correspondence to Feng Jiao or Yijin Kang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–24 and Supplementary Table 1.

Supplementary Data 1

Atomic coordinates of the optimized computational models.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luc, W., Fu, X., Shi, J. et al. Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. Nat Catal 2, 423–430 (2019). https://doi.org/10.1038/s41929-019-0269-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0269-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing