Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ethylene glycol as an efficient and reversible liquid-organic hydrogen carrier

Abstract

Hydrogen has long been regarded as an ideal alternative clean energy vector to overcome the drawbacks of fossil technology. However, the direct utilization of hydrogen is a challenge because of the low volumetric energy density of hydrogen gas and potential safety issues. Here we report an efficient and reversible liquid to liquid-organic hydrogen carrier system based on inexpensive, readily available and renewable ethylene glycol. This hydrogen storage system enables the efficient and reversible loading and discharge of hydrogen using a ruthenium pincer complex, with a theoretical hydrogen storage capacity of 6.5 wt%.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Development of a LOHC system based on ethylene glycol.
Fig. 2: Results of the catalytic acceptorless dehydrogenative coupling of EG.
Fig. 3: Results of the catalytic acceptorless dehydrogenative coupling of EG and the hydrogenation of the reaction mixture using dearomatized complex 10.
Fig. 4: Proposed catalytic cycle.
Fig. 5: Energy levels of the proposed catalytic cycle.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Höök, M. & Xu, T. Depletion of fossil fuels and anthropogenic climate change—a review. Energy Policy 52, 797–809 (2013).

    Article  Google Scholar 

  2. 2.

    Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    Rand, D. A. J. & Dell, R. M. Hydrogen Energy: Challenges and Prospects (RSC Publishing, Cambridge, 2007).

  4. 4.

    Jones, L. W. Liquid hydrogen as a fuel for the future. Science 174, 367–370 (1971).

    CAS  Article  Google Scholar 

  5. 5.

    Bockris, J. O’M. A hydrogen economy. Science 176, 1323 (1972).

    CAS  Article  Google Scholar 

  6. 6.

    Winsche, W. E., Hoffman, K. C. & Salzano, F. J. Hydrogen: its future role in the nation’s energy economy. Science 180, 1325–1332 (1973).

    CAS  Article  Google Scholar 

  7. 7.

    Steele, B. C. H. & Heinzel, A. Materials for fuel-cell technologies. Nature 414, 345–352 (2001).

    CAS  Article  Google Scholar 

  8. 8.

    Eberle, U., Müller, B. & von Helmolt, R. Fuel cell electric vehicles and hydrogen infrastructure: status 2012. Energy Environ. Sci. 5, 8780–8798 (2012).

    Article  Google Scholar 

  9. 9.

    Sadaghiani, M. S. & Mehrpooya, M. Introducing and energy analysis of a novel cryogenic hydrogen liquefaction process configuration. Int. J. Hydrogen Energy 42, 6033–6050 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    Schlapbach, L. & Züttel, A. Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001).

    CAS  Article  Google Scholar 

  11. 11.

    Eberle, U., Felderhoff, M. & Schüth, F. Chemical and physical solutions for hydrogen storage. Angew. Chem. Int. Ed. 48, 6608–6630 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    Yadav, M. & Xu, Q. Liquid-phase chemical hydrogen storage materials. Energy Environ. Sci. 5, 9698–9725 (2012).

    CAS  Article  Google Scholar 

  13. 13.

    Johnson, T. C., Morris, D. J. & Wills, M. Hydrogen generation from formic acid and alcohols using homogeneous catalysts. Chem. Soc. Rev. 39, 81–88 (2010).

    CAS  Article  Google Scholar 

  14. 14.

    Palo, D. R., Dagle, R. A. & Holladay, J. D. Methanol steam reforming for hydrogen production. Chem. Rev. 107, 3992–4021 (2007).

    CAS  Article  Google Scholar 

  15. 15.

    Nielsen, M. et al. Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide. Nature 495, 85–98 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    Rodríguez-Lugo, R. E. et al. A homogeneous transition metal complex for clean hydrogen production from methanol–water mixtures. Nat. Chem. 5, 342–347 (2013).

    Article  Google Scholar 

  17. 17.

    Lin, L. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 544, 80–83 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    Heim, L. E., Schlörer, N. E., Choi, J.-H. & Prechtl, M. H. G. Selective and mild hydrogen production using water and formaldehyde. Nat. Commun. 5, 3621 (2014).

    Article  Google Scholar 

  19. 19.

    Trincado, M. et al. Homogeneously catalysed conversion of aqueous formaldehyde to H2 and carbonate. Nat. Commun. 8, 14990 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    Mellmann, D., Sponholz, P., Junge, H. & Beller, M. Formic acid as a hydrogen storage material—development of homogeneous catalysts for selective hydrogen release. Chem. Soc. Rev. 45, 3954–3988 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Boddien, A. et al. Efficient dehydrogenation of formic acid using an iron catalyst. Science 333, 1733–1736 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    Hull, J. F. et al. Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures. Nat. Chem. 4, 383–388 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    Crabtree, R. H. Nitrogen-containing liquid organic hydrogen carriers: progress and prospects. ACS Sustain. Chem. Eng. 5, 4491–4498 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    Preuster, P., Papp, C. & Wasserscheid, P. Liquid organic hydrogen carriers (LOHCs): toward a hydrogen-free hydrogen economy. Acc. Chem. Res. 50, 74–85 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Gianotti, E., Taillades-Jacquin, M., Rozière, J. & Jones, D. J. High-purity hydrogen generation via dehydrogenation of organic carriers: a review on the catalytic process. ACS Catal. 8, 4660–4680 (2018).

    CAS  Article  Google Scholar 

  26. 26.

    Aakko-Saksa, P. T., Cook, C., Kiviaho, J. & Repo, T. Liquid organic hydrogen carriers for transportation and storing of renewable energy—review and discussion. J. Power Sources 396, 803–823 (2018).

    CAS  Article  Google Scholar 

  27. 27.

    Multi-Annual Work Plan 2014−2020 (Fuel Cells and Hydrogen Joint Undertaking, Brussels, 2014).

  28. 28.

    DOE Technical Targets for Onboard Hydrogen Storage for Light-Duty Vehicles (US DOE, Washington DC, 2016).

  29. 29.

    Pez, G. P. et al. Hydrogen storage by reversible hydrogenation of pi-conjugated substrates. US patent 7351395B1 (2008).

  30. 30.

    Moores, A., Poyatos, M., Luo, Y. & Crabtree, R. H. Catalysed low temperature H2 release from nitrogen heterocycles. New J. Chem. 30, 1675–1678 (2006).

    CAS  Article  Google Scholar 

  31. 31.

    Yamaguchi, R., Ikeda, C., Takahashi, Y. & Fujita, K.-i Homogeneous catalytic system for reversible dehydrogenation-hydrogenation reactions of nitrogen heterocycles with reversible interconversion of catalytic species. J. Am. Chem. Soc. 131, 8410–8412 (2009).

    CAS  Article  Google Scholar 

  32. 32.

    Fujita, K.-i, Wada, T. & Shiraishi, T. Reversible interconversion between 2,5-dimethylpyrazine and 2,5-dimethylpiperazine by iridium-catalyzed hydrogenation/dehydrogenation for efficient hydrogen storage. Angew. Chem. Int. Ed. 56, 10886–10889 (2017).

    CAS  Article  Google Scholar 

  33. 33.

    Gunanathan, C., Ben-David, Y. & Milstein, D. Direct synthesis of amides from alcohols and amines with liberation of H2. Science 317, 790–792 (2007).

    CAS  Article  Google Scholar 

  34. 34.

    Hu, P., Fogler, E., Diskin-Posner, Y., Iron, M. A. & Milstein, D. A novel liquid organic hydrogen carrier system based on catalytic peptide formation and hydrogenation. Nat. Commun. 6, 6859 (2015).

    CAS  Article  Google Scholar 

  35. 35.

    Hu, P., Ben-David, Y. & Milstein, D. Rechargeable hydrogen storage system based on the dehydrogenative coupling of ethylenediamine with ethanol. Angew. Chem. Int. Ed. 55, 1061–1064 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    Kumar, A., Janes, T., Espinosa-Jalapa, N. A. & Milstein, D. Selective hydrogenation of cyclic imides to diols and amines and its application in the development of a liquid organic hydrogen carrier. J. Am. Chem. Soc. 140, 7453–7457 (2018).

    CAS  Article  Google Scholar 

  37. 37.

    Kothandaraman, J. et al. Efficient reversible hydrogen carrier system based on amine reforming of methanol. J. Am. Chem. Soc. 139, 2549–2552 (2017).

    CAS  Article  Google Scholar 

  38. 38.

    Rebsdat, S. & Mayer, D. in Ullmann’s Encyclopedia of Industrial Chemistry (ed. Elvers, B.) 531–546 (Wiley-VCH, Weinheim, 2005).

  39. 39.

    Yue, H., Zhao, Y., Ma, X. & Gong, J. Ethylene glycol: properties, synthesis, and applications. Chem. Soc. Rev. 41, 4218–4244 (2012).

    CAS  Article  Google Scholar 

  40. 40.

    Wang, A. & Zhang, T. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts. Acc. Chem. Res. 46, 1377–1386 (2013).

    CAS  Article  Google Scholar 

  41. 41.

    Cortright, R. D., Davda, R. R. & Dumesic, J. A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418, 964–967 (2002).

    CAS  Article  Google Scholar 

  42. 42.

    Huber, G. W., Shabaker, J. W. & Dumesic, J. A. Raney Ni–Sn catalyst for H2 production from biomass-derived hydrocarbons. Science 300, 2075–2077 (2003).

    CAS  Article  Google Scholar 

  43. 43.

    Zhang, J., Leitus, G., Ben-David, Y. & Milstein, D. Facile conversion of alcohols into esters and dihydrogen catalyzed by new ruthenium complexes. J. Am. Chem. Soc. 127, 10840–10841 (2005).

    CAS  Article  Google Scholar 

  44. 44.

    Zhang, J., Leitus, G., Ben-David, Y. & Milstein, D. Efficient homogeneous catalytic hydrogenation of esters to alcohols. Angew. Chem. Int. Ed. 45, 1113–1115 (2006).

    CAS  Article  Google Scholar 

  45. 45.

    Gunanathan, C. & Milstein, D. Applications of acceptorless dehydrogenation and related transformations in chemical synthesis. Science 341, 1229712/1–11 (2013).

    Article  Google Scholar 

  46. 46.

    Crabtree, R. H. Homogeneous transition metal catalysis of acceptorless dehydrogenative alcohol oxidation: applications in hydrogen storage and to heterocycle synthesis. Chem. Rev. 117, 9228–9249 (2017).

    CAS  Article  Google Scholar 

  47. 47.

    Trincado, M., Banerjee, D. & Grützmacher, H. Molecular catalysts for hydrogen production from alcohols. Energy Environ. Sci. 7, 2464–2503 (2014).

    CAS  Article  Google Scholar 

  48. 48.

    Dohm, S., Hansen, A., Steinmeetz, M., Grimme, S. & Checinski, M. P. Comprehensive thermochemical benchmark set of realistic closed-shell metal organic reactions. J. Chem. Theory Comput. 14, 2596–2608 (2018).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the European Research Council (ERC AdG 692775). D.M. holds the Israel Matz Professorial Chair of Organic Chemistry. Y.-Q.Z. and Y.X. acknowledge the Sustainability and Energy Research Initiative (SAERI) Weizmann Institute of Science for a research fellowship. N.v.W. is supported by the Foreign Postdoctoral Fellowship Program of the Israel Academy of Sciences and Humanities. N.v.W. thanks M. Iron (Department of Chemical Research Support) for fruitful discussions regarding the density functional theory calculations.

Author information

Affiliations

Authors

Contributions

D.M. conceived and directed the project. Y.-Q.Z. and D.M. designed the experiments. Y.-Q.Z. performed and analysed the experiments. N.v.W. performed the computational studies. A.A. carried out pioneering studies on this project. Y.X. designed and built the gas-collecting system and provided useful discussions. Y.-Q.Z., N.v.W. and D.M. prepared the manuscript.

Corresponding author

Correspondence to David Milstein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–62, Supplementary Tables 1–3, Supplementary References

Structure calculations

Cartesian Coordinates of Computed Structures

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zou, YQ., von Wolff, N., Anaby, A. et al. Ethylene glycol as an efficient and reversible liquid-organic hydrogen carrier. Nat Catal 2, 415–422 (2019). https://doi.org/10.1038/s41929-019-0265-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing