Ethylene glycol as an efficient and reversible liquid-organic hydrogen carrier

Abstract

Hydrogen has long been regarded as an ideal alternative clean energy vector to overcome the drawbacks of fossil technology. However, the direct utilization of hydrogen is a challenge because of the low volumetric energy density of hydrogen gas and potential safety issues. Here we report an efficient and reversible liquid to liquid-organic hydrogen carrier system based on inexpensive, readily available and renewable ethylene glycol. This hydrogen storage system enables the efficient and reversible loading and discharge of hydrogen using a ruthenium pincer complex, with a theoretical hydrogen storage capacity of 6.5 wt%.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Development of a LOHC system based on ethylene glycol.
Fig. 2: Results of the catalytic acceptorless dehydrogenative coupling of EG.
Fig. 3: Results of the catalytic acceptorless dehydrogenative coupling of EG and the hydrogenation of the reaction mixture using dearomatized complex 10.
Fig. 4: Proposed catalytic cycle.
Fig. 5: Energy levels of the proposed catalytic cycle.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Höök, M. & Xu, T. Depletion of fossil fuels and anthropogenic climate change—a review. Energy Policy 52, 797–809 (2013).

  2. 2.

    Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

  3. 3.

    Rand, D. A. J. & Dell, R. M. Hydrogen Energy: Challenges and Prospects (RSC Publishing, Cambridge, 2007).

  4. 4.

    Jones, L. W. Liquid hydrogen as a fuel for the future. Science 174, 367–370 (1971).

  5. 5.

    Bockris, J. O’M. A hydrogen economy. Science 176, 1323 (1972).

  6. 6.

    Winsche, W. E., Hoffman, K. C. & Salzano, F. J. Hydrogen: its future role in the nation’s energy economy. Science 180, 1325–1332 (1973).

  7. 7.

    Steele, B. C. H. & Heinzel, A. Materials for fuel-cell technologies. Nature 414, 345–352 (2001).

  8. 8.

    Eberle, U., Müller, B. & von Helmolt, R. Fuel cell electric vehicles and hydrogen infrastructure: status 2012. Energy Environ. Sci. 5, 8780–8798 (2012).

  9. 9.

    Sadaghiani, M. S. & Mehrpooya, M. Introducing and energy analysis of a novel cryogenic hydrogen liquefaction process configuration. Int. J. Hydrogen Energy 42, 6033–6050 (2017).

  10. 10.

    Schlapbach, L. & Züttel, A. Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001).

  11. 11.

    Eberle, U., Felderhoff, M. & Schüth, F. Chemical and physical solutions for hydrogen storage. Angew. Chem. Int. Ed. 48, 6608–6630 (2009).

  12. 12.

    Yadav, M. & Xu, Q. Liquid-phase chemical hydrogen storage materials. Energy Environ. Sci. 5, 9698–9725 (2012).

  13. 13.

    Johnson, T. C., Morris, D. J. & Wills, M. Hydrogen generation from formic acid and alcohols using homogeneous catalysts. Chem. Soc. Rev. 39, 81–88 (2010).

  14. 14.

    Palo, D. R., Dagle, R. A. & Holladay, J. D. Methanol steam reforming for hydrogen production. Chem. Rev. 107, 3992–4021 (2007).

  15. 15.

    Nielsen, M. et al. Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide. Nature 495, 85–98 (2013).

  16. 16.

    Rodríguez-Lugo, R. E. et al. A homogeneous transition metal complex for clean hydrogen production from methanol–water mixtures. Nat. Chem. 5, 342–347 (2013).

  17. 17.

    Lin, L. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 544, 80–83 (2017).

  18. 18.

    Heim, L. E., Schlörer, N. E., Choi, J.-H. & Prechtl, M. H. G. Selective and mild hydrogen production using water and formaldehyde. Nat. Commun. 5, 3621 (2014).

  19. 19.

    Trincado, M. et al. Homogeneously catalysed conversion of aqueous formaldehyde to H2 and carbonate. Nat. Commun. 8, 14990 (2017).

  20. 20.

    Mellmann, D., Sponholz, P., Junge, H. & Beller, M. Formic acid as a hydrogen storage material—development of homogeneous catalysts for selective hydrogen release. Chem. Soc. Rev. 45, 3954–3988 (2016).

  21. 21.

    Boddien, A. et al. Efficient dehydrogenation of formic acid using an iron catalyst. Science 333, 1733–1736 (2011).

  22. 22.

    Hull, J. F. et al. Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures. Nat. Chem. 4, 383–388 (2012).

  23. 23.

    Crabtree, R. H. Nitrogen-containing liquid organic hydrogen carriers: progress and prospects. ACS Sustain. Chem. Eng. 5, 4491–4498 (2017).

  24. 24.

    Preuster, P., Papp, C. & Wasserscheid, P. Liquid organic hydrogen carriers (LOHCs): toward a hydrogen-free hydrogen economy. Acc. Chem. Res. 50, 74–85 (2017).

  25. 25.

    Gianotti, E., Taillades-Jacquin, M., Rozière, J. & Jones, D. J. High-purity hydrogen generation via dehydrogenation of organic carriers: a review on the catalytic process. ACS Catal. 8, 4660–4680 (2018).

  26. 26.

    Aakko-Saksa, P. T., Cook, C., Kiviaho, J. & Repo, T. Liquid organic hydrogen carriers for transportation and storing of renewable energy—review and discussion. J. Power Sources 396, 803–823 (2018).

  27. 27.

    Multi-Annual Work Plan 2014−2020 (Fuel Cells and Hydrogen Joint Undertaking, Brussels, 2014).

  28. 28.

    DOE Technical Targets for Onboard Hydrogen Storage for Light-Duty Vehicles (US DOE, Washington DC, 2016).

  29. 29.

    Pez, G. P. et al. Hydrogen storage by reversible hydrogenation of pi-conjugated substrates. US patent 7351395B1 (2008).

  30. 30.

    Moores, A., Poyatos, M., Luo, Y. & Crabtree, R. H. Catalysed low temperature H2 release from nitrogen heterocycles. New J. Chem. 30, 1675–1678 (2006).

  31. 31.

    Yamaguchi, R., Ikeda, C., Takahashi, Y. & Fujita, K.-i Homogeneous catalytic system for reversible dehydrogenation-hydrogenation reactions of nitrogen heterocycles with reversible interconversion of catalytic species. J. Am. Chem. Soc. 131, 8410–8412 (2009).

  32. 32.

    Fujita, K.-i, Wada, T. & Shiraishi, T. Reversible interconversion between 2,5-dimethylpyrazine and 2,5-dimethylpiperazine by iridium-catalyzed hydrogenation/dehydrogenation for efficient hydrogen storage. Angew. Chem. Int. Ed. 56, 10886–10889 (2017).

  33. 33.

    Gunanathan, C., Ben-David, Y. & Milstein, D. Direct synthesis of amides from alcohols and amines with liberation of H2. Science 317, 790–792 (2007).

  34. 34.

    Hu, P., Fogler, E., Diskin-Posner, Y., Iron, M. A. & Milstein, D. A novel liquid organic hydrogen carrier system based on catalytic peptide formation and hydrogenation. Nat. Commun. 6, 6859 (2015).

  35. 35.

    Hu, P., Ben-David, Y. & Milstein, D. Rechargeable hydrogen storage system based on the dehydrogenative coupling of ethylenediamine with ethanol. Angew. Chem. Int. Ed. 55, 1061–1064 (2016).

  36. 36.

    Kumar, A., Janes, T., Espinosa-Jalapa, N. A. & Milstein, D. Selective hydrogenation of cyclic imides to diols and amines and its application in the development of a liquid organic hydrogen carrier. J. Am. Chem. Soc. 140, 7453–7457 (2018).

  37. 37.

    Kothandaraman, J. et al. Efficient reversible hydrogen carrier system based on amine reforming of methanol. J. Am. Chem. Soc. 139, 2549–2552 (2017).

  38. 38.

    Rebsdat, S. & Mayer, D. in Ullmann’s Encyclopedia of Industrial Chemistry (ed. Elvers, B.) 531–546 (Wiley-VCH, Weinheim, 2005).

  39. 39.

    Yue, H., Zhao, Y., Ma, X. & Gong, J. Ethylene glycol: properties, synthesis, and applications. Chem. Soc. Rev. 41, 4218–4244 (2012).

  40. 40.

    Wang, A. & Zhang, T. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts. Acc. Chem. Res. 46, 1377–1386 (2013).

  41. 41.

    Cortright, R. D., Davda, R. R. & Dumesic, J. A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418, 964–967 (2002).

  42. 42.

    Huber, G. W., Shabaker, J. W. & Dumesic, J. A. Raney Ni–Sn catalyst for H2 production from biomass-derived hydrocarbons. Science 300, 2075–2077 (2003).

  43. 43.

    Zhang, J., Leitus, G., Ben-David, Y. & Milstein, D. Facile conversion of alcohols into esters and dihydrogen catalyzed by new ruthenium complexes. J. Am. Chem. Soc. 127, 10840–10841 (2005).

  44. 44.

    Zhang, J., Leitus, G., Ben-David, Y. & Milstein, D. Efficient homogeneous catalytic hydrogenation of esters to alcohols. Angew. Chem. Int. Ed. 45, 1113–1115 (2006).

  45. 45.

    Gunanathan, C. & Milstein, D. Applications of acceptorless dehydrogenation and related transformations in chemical synthesis. Science 341, 1229712/1–11 (2013).

  46. 46.

    Crabtree, R. H. Homogeneous transition metal catalysis of acceptorless dehydrogenative alcohol oxidation: applications in hydrogen storage and to heterocycle synthesis. Chem. Rev. 117, 9228–9249 (2017).

  47. 47.

    Trincado, M., Banerjee, D. & Grützmacher, H. Molecular catalysts for hydrogen production from alcohols. Energy Environ. Sci. 7, 2464–2503 (2014).

  48. 48.

    Dohm, S., Hansen, A., Steinmeetz, M., Grimme, S. & Checinski, M. P. Comprehensive thermochemical benchmark set of realistic closed-shell metal organic reactions. J. Chem. Theory Comput. 14, 2596–2608 (2018).

Download references

Acknowledgements

This research was supported by the European Research Council (ERC AdG 692775). D.M. holds the Israel Matz Professorial Chair of Organic Chemistry. Y.-Q.Z. and Y.X. acknowledge the Sustainability and Energy Research Initiative (SAERI) Weizmann Institute of Science for a research fellowship. N.v.W. is supported by the Foreign Postdoctoral Fellowship Program of the Israel Academy of Sciences and Humanities. N.v.W. thanks M. Iron (Department of Chemical Research Support) for fruitful discussions regarding the density functional theory calculations.

Author information

Affiliations

Authors

Contributions

D.M. conceived and directed the project. Y.-Q.Z. and D.M. designed the experiments. Y.-Q.Z. performed and analysed the experiments. N.v.W. performed the computational studies. A.A. carried out pioneering studies on this project. Y.X. designed and built the gas-collecting system and provided useful discussions. Y.-Q.Z., N.v.W. and D.M. prepared the manuscript.

Corresponding author

Correspondence to David Milstein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–62, Supplementary Tables 1–3, Supplementary References

Structure calculations

Cartesian Coordinates of Computed Structures

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zou, Y., von Wolff, N., Anaby, A. et al. Ethylene glycol as an efficient and reversible liquid-organic hydrogen carrier. Nat Catal 2, 415–422 (2019). https://doi.org/10.1038/s41929-019-0265-z

Download citation

Further reading