Article | Published:

Perfluorocarbon nanoemulsion promotes the delivery of reducing equivalents for electricity-driven microbial CO2 reduction

Nature Catalysisvolume 2pages407414 (2019) | Download Citation

Abstract

Combining inorganic catalysts with CO2-fixing microorganisms has displayed a high efficiency for electricity-driven CO2 reduction. However, the maximum throughput can be limited by the low solubility of mediators, such as H2, that deliver reducing equivalents from the electrodes to the microbes. Here we report that the introduction of a biocompatible perfluorocarbon nanoemulsion as a H2 carrier increases the throughput of CO2 reduction into acetic acid by 190%. With the acetogen Sporomusa ovata as a model system, an average acetate titre of 6.4 ± 1.1 g l−1 (107 mM) was achieved in four days with close to 100% Faradaic efficiency. This is equivalent to a productivity of 1.1 mM h−1, among the highest in bioelectrochemical systems. A mechanistic investigation shows that the non-specific binding of perfluorocarbon nanoemulsions promotes the kinetics of H2 transfer and subsequent oxidation by more than threefold. Introducing nanoscale gas carriers is viable to alleviate throughput bottlenecks in the electricity-driven microbial CO2 reduction into commodity chemicals.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

  2. 2.

    Nocera, D. G. Solar fuels and solar chemicals industry. Acc. Chem. Res. 50, 616–619 (2017).

  3. 3.

    Jia, J. et al. Heterogeneous catalytic hydrogenation of CO2 by metal oxides: defect engineering—perfecting imperfection. Chem. Soc. Rev. 46, 4631–4644 (2017).

  4. 4.

    Dinh, C.-T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

  5. 5.

    White, J. L. et al. Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chem. Rev. 115, 12888–12935 (2015).

  6. 6.

    Jouny, M., Luc, W. & Jiao, F. High-rate electroreduction of carbon monoxide to multi-carbon products. Nat. Catal. 1, 748–755 (2018).

  7. 7.

    Li, J. et al. Efficient electrocatalytic CO2 reduction on a three-phase interface. Nat. Catal. 1, 592–600 (2018).

  8. 8.

    Bushuyev, O. S. et al. What should we make with CO2 and how can we make it? Joule 2, 825–832 (2018).

  9. 9.

    Appel, A. M. et al. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem. Rev. 113, 6621–6658 (2013).

  10. 10.

    Liu, C., Colón, B. C., Ziesack, M., Silver, P. A. & Nocera, D. G. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352, 1210–1213 (2016).

  11. 11.

    Kornienko, N., Zhang, J. Z., Sakimoto, K. K., Yang, P. & Reisner, E. Interfacing Nature’s catalytic machinery with synthetic materials for semi-artificial photosynthesis. Nat. Nanotechnol. 13, 890–899 (2018).

  12. 12.

    Li, H. et al. Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335, 1596–1596 (2012).

  13. 13.

    Sakimoto, K. K., Wong, A. B. & Yang, P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351, 74–77 (2015).

  14. 14.

    Claassens, N. J., Sousa, D. Z., dos Santos, V. A. P. M., de Vos, W. M. & van der Oost, J. Harnessing the power of microbial autotrophy. Nat. Rev. Microbiol. 14, 692–706 (2016).

  15. 15.

    Brown, K. A. et al. Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid. Science 352, 448–450 (2016).

  16. 16.

    Liao, J. C., Mi, L., Pontrelli, S. & Luo, S. Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat. Rev. Microbiol. 14, 288–304 (2016).

  17. 17.

    Cornejo, J. A., Sheng, H., Edri, E., M. Ajo-Franklin, C. & Frei, H. Nanoscale membranes that chemically isolate and electronically wire up the abiotic/biotic interface. Nat. Commun. 9, 2263 (2018).

  18. 18.

    Rabaey, K. & Rozendal, R. A. Microbial electrosynthesis—revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 8, 706–716 (2010).

  19. 19.

    Sakimoto, K. K. et al. Physical biology of the materials–microorganism interface. J. Am. Chem. Soc. 140, 1978–1985 (2018).

  20. 20.

    Milton, R. D., Wang, T., Knoche, K. L. & Minteer, S. D. Tailoring biointerfaces for electrocatalysis. Langmuir 32, 2291–2301 (2016).

  21. 21.

    Zhang, T. More efficient together. Science 350, 738–739 (2015).

  22. 22.

    Liu, C., Sakimoto, K. K., Colón, B. C., Silver, P. A. & Nocera, D. G. Ambient nitrogen reduction cycle using a hybrid inorganic–biological system. Proc. Natl Acad. Sci. USA 114, 6450–6455 (2017).

  23. 23.

    Lubitz, W., Ogata, H., Rüdiger, O. & Reijerse, E. Hydrogenases. Chem. Rev. 114, 4081–4148 (2014).

  24. 24.

    Liu, C., Nangle, S. N., Colón, B. C., Silver, P. A. & Nocera, D. G. 13C-Labeling the carbon-fixation pathway of a highly efficient artificial photosynthetic system. Faraday Discuss. 198, 529–537 (2017).

  25. 25.

    Gevantman, L. H. in CRC Handbook of Chemistry and Physics (ed. Haynes, W. M.) Ch. 5 (CRC Press, 2015).

  26. 26.

    Watanabe, K., Manefield, M., Lee, M. & Kouzuma, A. Electron shuttles in biotechnology. Curr. Opin. Biotechnol. 20, 633–641 (2009).

  27. 27.

    Squires, J. E. Artificial blood. Science 295, 1002–1005 (2002).

  28. 28.

    Ju, L. K., Lee, J. F. & Armiger, W. B. Enhancing oxygen transfer in bioreactors by perfluorocarbon emulsions. Biotechnol. Prog. 7, 323–329 (1991).

  29. 29.

    Yamamoto, S., Honda, H., Shiragami, N. & Unno, H. Enhancement of autotrophic growth rate of Alcaligenes eutrophus in a medium containing perfluorocarbon under low oxygen partial pressure. Biotechnol. Lett. 14, 733–736 (1992).

  30. 30.

    Dissolving Gases in FLUTEC Liquids (F2 Chemicals Ltd, 2005); http://f2chemicals.com/pdf/technical/Gas%20solubility.pdf

  31. 31.

    Sletten, E. M. & Swager, T. M. Readily accessible multifunctional fluorous emulsions. Chem. Sci. 7, 5091–5097 (2016).

  32. 32.

    Sletten, E. M. & Swager, T. M. Fluorofluorophores: fluorescent fluorous chemical tools spanning the visible spectrum. J. Am. Chem. Soc. 136, 13574–13577 (2014).

  33. 33.

    Möller, B., Oßmer, R., Howard, B. H., Gottschalk, G. & Hippe, H. Sporomusa, a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec nov. Arch. Microbiol. 139, 388–396 (1984).

  34. 34.

    Nevin, K. P., Woodard, T. L., Franks, A. E., Summers, Z. M. & Lovley, D. R. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBIO 1, e00103 (2010).

  35. 35.

    Liu, C. et al. Nanowire–bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett. 15, 3634–3639 (2015).

  36. 36.

    Aryal, N., Tremblay, P. L., Lizak, D. M. & Zhang, T. Performance of different Sporomusa species for the microbial electrosynthesis of acetate from carbon dioxide. Bioresour. Technol. 233, 184–190 (2017).

  37. 37.

    LaBelle, E. V. & May, H. D. Energy efficiency and productivity enhancement of microbial electrosynthesis of acetate. Front. Microbiol. 8, 756 (2017).

  38. 38.

    Paseka, I. & Velicka, J. Hydrogen evolution and hydrogen sorption on amorphous smooth Me−P(x) (Me = Ni, Co and Fe−Ni) electrodes. Electrochim. Acta 42, 237–242 (1997).

  39. 39.

    Jiang, N., You, B., Sheng, M. & Sun, Y. Electrodeposited cobalt–phosphorous-derived films as competent bifunctional catalysts for overall water splitting. Angew. Chem. Int. Ed. 54, 6251–6254 (2015).

  40. 40.

    Haas, T., Krause, R., Weber, R., Demler, M. & Schmid, G. Technical photosynthesis involving CO2 electrolysis and fermentation. Nat. Catal. 1, 32–39 (2018).

  41. 41.

    Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications 2nd edn, Ch. 9 (John Wiley & Sons, Hoboken, 2001).

  42. 42.

    Konopka, S. J. & McDuffie, B. Diffusion coefficients of ferri- and ferrocyanide ions in aqueous media, using twin-electrode thin-layer electrochemistry. Anal. Chem. 42, 1741–1746 (1970).

  43. 43.

    Jeremiasse, A. W., Hamelers, H. V. M., Kleijn, J. M. & Buisman, C. J. N. Use of biocompatible buffers to reduce the concentration overpotential for hydrogen evolution. Environ. Sci. Technol. 43, 6882–6887 (2009).

Download references

Acknowledgements

We acknowledge B. Natinsky for the diffusion ordered spectroscopy experiments. We also thank S. Kosuri for the use of flow cytometry facilities and the Molecular Instrumentation Center at the University of California, Los Angeles for sample characterizations. D.A.E. acknowledges the financial support of an NIH training grant (5T32GM067555-12). J.A.I. is supported by a Eugene V. Cota-Robles fellowship. E.M.S. and C.L. acknowledge start-up funds from the University of California, Los Angeles and the financial support of the Jeffery and Helo Zink Endowed Professional Development Term Chair (to C.L.) and the John D. McTague Career Development Term Chair (to E.M.S.).

Author information

Affiliations

  1. Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA

    • Roselyn M. Rodrigues
    • , Xun Guan
    • , Jesus A. Iñiguez
    • , Daniel A. Estabrook
    • , John O. Chapman
    • , Shuyuan Huang
    • , Ellen M. Sletten
    •  & Chong Liu

Authors

  1. Search for Roselyn M. Rodrigues in:

  2. Search for Xun Guan in:

  3. Search for Jesus A. Iñiguez in:

  4. Search for Daniel A. Estabrook in:

  5. Search for John O. Chapman in:

  6. Search for Shuyuan Huang in:

  7. Search for Ellen M. Sletten in:

  8. Search for Chong Liu in:

Contributions

C.L. supervised the project. C.L. and R.M.R. designed experiments and wrote the paper. R.M.R. conducted and coordinated the majority of the experiments with the assistance of S.H. D.A.E. and J.O.C. prepared the nanoemulsions under supervision of E.M.S. X.G. conducted the RDE experiments. J.A.I. performed experiments of flow cytometry. All the authors discussed the results and assisted during the manuscript preparation.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Chong Liu.

Supplementary information

  1. Supplementary Information

    Supplementary Methods, Supplementary Discussion, Supplementary Tables 1–4, Supplementary Figures 1–11, Supplementary References

  2. Reporting Summary

About this article

Publication history

Received

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/s41929-019-0264-0