Solvent-mediated charge separation drives alternative hydrogenation path of furanics in liquid water

Abstract

Compared to the vapour phase, liquid-phase heterogeneous catalysis provides additional degrees of freedom for reaction engineering, but the multifaceted solvent effects complicate analysis of the reaction mechanism. Here, using furfural as an example, we reveal the important role of water-mediated protonation in a typical hydrogenation reaction over a supported Pd catalyst. Depending on the solvent, we have observed different reaction orders with respect to the partial pressure of H2, as well as distinct selectivity towards hydrogenation of the conjugated C=O and C=C double bonds. Free energy calculations show that H2O participates directly in the kinetically relevant reaction step and provides an additional channel for hydrogenation of the aldehyde group, in which hydrogen bypasses the direct surface reaction via a hydrogen-bonded water network. This solution-mediated reaction pathway shows the potential role of the solvent for tuning the selectivity of metal-catalysed hydrogenation when charge separation on the metal surface is feasible.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic for the reaction path in liquid-phase catalysis.
Fig. 2: Catalyst characterization and test.
Fig. 3: Free energy calculations of the hydrogenation of furfural.
Fig. 4: Reaction scheme for the hydrogenation of furfural over a metal surface in water.

Data availability

Any data that support the plots within this paper and other findings of the study are available from the corresponding author upon reasonable request. The following files are available in the Supplementary Information: catalyst particle size calculations, FAL conversion and product yields in water at varying times and H2 pressures, H/D exchange experiment, derivation of rate equations, AIMD calculations of FAL in water, atomic structures along the reaction pathway, free energy diagram for furanyl ring hydrogenation and maximum rate analysis data.

References

  1. 1.

    Carpenter, B. K., Harvey, J. N. & Orr-Ewing, A. J. The study of reactive intermediates in condensed phases. J. Am. Chem. Soc. 138, 4695–4705 (2016).

    CAS  Article  Google Scholar 

  2. 2.

    Chheda, J. N., Huber, G. W. & Dumesic, J. A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew. Chem. Int. Ed. 46, 7164–7183 (2007).

    CAS  Article  Google Scholar 

  3. 3.

    Struebing, H. et al. Computer-aided molecular design of solvents for accelerated reaction kinetics. Nat. Chem. 5, 952–957 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    Mellmer, M. A. et al. Solvent-enabled control of reactivity for liquid-phase reactions of biomass-derived compounds. Nat. Catal. 1, 199–207 (2018).

    Article  Google Scholar 

  5. 5.

    Crossley, S., Faria, J., Shen, M. & Resasco, D. E. Solid nanoparticles that catalyze biofuel upgrade reactions at the water/oil. Science 327, 68–72 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    Franck, J. & Rabinowitsch, E. Some remarks about free radicals and the photochemistry of solutions. Trans. Faraday Soc. 30, 120–130 (1934).

    CAS  Article  Google Scholar 

  7. 7.

    Madon, R. J. & Iglesia, E. Catalytic reaction rates in thermodynamically non-ideal systems. J. Mol. Catal. A 163, 189–204 (2000).

    CAS  Article  Google Scholar 

  8. 8.

    Mellmer, M. A. et al. Solvent effects in acid-catalyzed biomass conversion reactions. Angew. Chem. Int. Ed. 53, 11872–11875 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    Sicinska, D., Truhlar, D. G. & Paneth, P. Solvent-dependent transition states for decarboxylations. J. Am. Chem. Soc. 123, 7683–7686 (2001).

    CAS  Article  Google Scholar 

  10. 10.

    Hibbitts, D. D., Loveless, B. T., Neurock, M. & Iglesia, E. Mechanistic role of water on the rate and selectivity of Fischer–Tropsch synthesis on ruthenium catalysts. Angew. Chem. Int. Ed. 52, 12273–12278 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    Saavedra, J. et al. Controlling activity and selectivity using water in the Au-catalysed preferential oxidation of CO in H2. Nat. Chem. 8, 585–590 (2016).

    Article  Google Scholar 

  12. 12.

    Saavedra, J., Doan, H. A., Pursell, C. J., Grabow, L. C. & Chandler, B. D. The critical role of water at the gold–titania interface in catalytic CO oxidation. Science 345, 1599–1602 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Yoon, Y., Rousseau, R., Weber, R. S., Mei, D. H. & Lercher, J. A. First-principles study of phenol hydrogenation on Pt and Ni catalysts in aqueous phase. J. Am. Chem. Soc. 136, 10287–10298 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    Resasco, D. E., Sitthisa, S., Faria, J., Prasomsri, T. & Ruiz, M. P. in Solid Waste as a Renewable Resource: Methodologies (eds Albanese, J. A. F. & Pilar Ruiz, M.) 103 (CRC Press, 2015).

  15. 15.

    Lange, J. P., van der Heide, E., van Buijtenen, J. & Price, R. Furfural—a promising platform for lignocellulosic biofuels. ChemSusChem 5, 150–166 (2012).

    CAS  Article  Google Scholar 

  16. 16.

    Resasco, D. E., Wang, B. & Sabatini, D. Distributed processes for biomass conversion could aid UN sustainable development goals. Nat. Catal. 1, 731–735 (2018).

    Article  Google Scholar 

  17. 17.

    Sitthisa, S. & Resasco, D. E. Hydrodeoxygenation of furfural over supported metal catalysts: a comparative study of Cu, Pd and Ni. Catal. Lett. 141, 784–791 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    Panagiotopoulou, P., Martin, N. & Vlachos, D. G. Effect of hydrogen donor on liquid phase catalytic transfer hydrogenation of furfural over a Ru/RuO2/C catalyst. J. Mol. Catal. A 392, 223–228 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    Maldonado, G. M. G., Assary, R. S., Dumesic, J. & Curtiss, L. A. Experimental and theoretical studies of the acid-catalyzed conversion of furfuryl alcohol to levulinic acid in aqueous solution. Energy Environ. Sci. 5, 6981–6989 (2012).

    Article  Google Scholar 

  20. 20.

    Corma, A., Iborra, S. & Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107, 2411–2502 (2007).

    CAS  Article  Google Scholar 

  21. 21.

    Serrano-Ruiz, J. C., Luque, R. & Sepulveda-Escribano, A. Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing. Chem. Soc. Rev. 40, 5266–5281 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    Vorotnikov, V., Mpourmpakis, G. & Vlachos, D. G. DFT study of furfural conversion to furan, furfuryl alcohol, and 2-methylfuran on Pd(111). ACS Catal. 2, 2496–2504 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    Pang, S. H. & Medlin, J. W. Adsorption and reaction of furfural and furfuryl alcohol on Pd(111): unique reaction pathways for multifunctional reagents. ACS Catal. 1, 1272–1283 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    Wang, S. G., Vorotnikov, V. & Vlachos, D. G. Coverage-induced conformational effects on activity and selectivity: hydrogenation and decarbonylation of furfural on Pd(111). ACS Catal. 5, 104–112 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    Pang, S. H., Schoenbaum, C. A., Schwartz, D. K. & Medlin, J. W. Effects of thiol modifiers on the kinetics of furfural hydrogenation over Pd catalysts. ACS Catal. 4, 3123–3131 (2014).

    CAS  Article  Google Scholar 

  26. 26.

    Pang, S. H., Schoenbaum, C. A., Schwartz, D. K. & Medlin, J. W. Directing reaction pathways by catalyst active-site selection using self-assembled monolayers. Nat. Commun. 4, 2448 (2013).

    Article  Google Scholar 

  27. 27.

    Sitthisa, S. et al. Conversion of furfural and 2-methylpentanal on Pd/SiO2 and Pd-Cu/SiO2 catalysts. J. Catal. 280, 17–27 (2011).

    CAS  Article  Google Scholar 

  28. 28.

    Sitthisa, S., An, W. & Resasco, D. E. Selective conversion of furfural to methylfuran over silica-supported Ni–Fe bimetallic catalysts. J. Catal. 284, 90–101 (2011).

    CAS  Article  Google Scholar 

  29. 29.

    Fulajtarova, K. et al. Aqueous phase hydrogenation of furfural to furfuryl alcohol over Pd–Cu catalysts. Appl. Catal. A 502, 78–85 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    Merlo, A. B., Vetere, V., Ruggera, J. F. & Casella, M. L. Bimetallic PtSn catalyst for the selective hydrogenation of furfural to furfuryl alcohol in liquid-phase. Catal. Commun. 10, 1665–1669 (2009).

    CAS  Article  Google Scholar 

  31. 31.

    Chen, X. F., Zhang, L. G., Zhang, B., Guo, X. C. & Mu, X. D. Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C3N4 nanosheets catalysts in water. Sci. Rep. 6, 28558 (2016).

    Article  Google Scholar 

  32. 32.

    Vaidya, P. D. & Mahajani, V. V. Kinetics of liquid-phase hydrogenation of furfuraldehyde to furfuryl alcohol over a Pt/C catalyst. Ind. Eng. Chem. Res. 42, 3881–3885 (2003).

    CAS  Article  Google Scholar 

  33. 33.

    Lee, J. C., Xu, Y. & Huber, G. W. High-throughput screening of monometallic catalysts for aqueous-phase hydrogenation of biomass-derived oxygenates. Appl. Catal. B 140, 98–107 (2013).

    Google Scholar 

  34. 34.

    Frainier, L. J. & Fineberg, H. H. Copper chromite catalyst for preparation of furfuryl alcohol from furfural. US patent 4,251,396A (1979).

  35. 35.

    Villaverde, M. M., Bertero, N. M., Garetto, T. F. & Marchi, A. J. Selective liquid-phase hydrogenation of furfural to furfuryl alcohol over Cu-based catalysts. Catal. Today 213, 87–92 (2013).

    CAS  Article  Google Scholar 

  36. 36.

    Singh, U. K. & Vannice, M. A. Kinetics of liquid-phase hydrogenation reactions over supported metal catalysts—a review. Appl. Catal. A 213, 1–24 (2001).

    CAS  Article  Google Scholar 

  37. 37.

    Nakagawa, Y., Takada, K., Tamura, M. & Tomishige, K. Total hydrogenation of furfural and 5-hydroxymethylfurfural over supported Pd–Ir alloy catalyst. ACS Catal. 4, 2718–2726 (2014).

    CAS  Article  Google Scholar 

  38. 38.

    Dumesic, J. A., Rudd, D. F., Aparicio, L. M., Rekoske, J. E. & Trevino, A. A. The Microkinetics of Heterogeneous Catalysis (American Chemical Society, Washington DC, 1993).

  39. 39.

    Loffreda, D., Delbecq, F., Vigne, F. & Sautet, P. Chemo-regioselectivity in heterogeneous catalysis: competitive routes for C=O and C=C hydrogenations from a theoretical approach. J. Am. Chem. Soc. 128, 1316–1323 (2006).

    CAS  Article  Google Scholar 

  40. 40.

    Maroncelli, M., MacInnis, J. & Fleming, G. R. Polar solvent dynamics and electron-transfer reactions. Science 243, 1674–1681 (1989).

    CAS  Article  Google Scholar 

  41. 41.

    Henriksen, N. E. & Hansen, F. Y. Theories of Molecular Reaction Dynamics: The Microscopic Foundation of Chemical Kinetics (Oxford University Press, Oxford, 2018).

  42. 42.

    Kibler, L. A. Hydrogen electrocatalysis. Chemphyschem 7, 985–991 (2006).

    CAS  Article  Google Scholar 

  43. 43.

    Agmon, N. The Grotthuss mechanism. Chem. Phys. Lett. 244, 456–462 (1995).

    CAS  Article  Google Scholar 

  44. 44.

    Cukier, R. I. & Nocera, D. G. Proton-coupled electron transfer. Annu. Rev. Phys. Chem. 49, 337–369 (1998).

    CAS  Article  Google Scholar 

  45. 45.

    Farberow, C. A., Dumesic, J. A. & Mavrikakis, M. Density functional theory calculations and analysis of reaction pathways for reduction of nitric oxide by hydrogen on Pt(111). ACS Catal. 4, 3307–3319 (2014).

    CAS  Article  Google Scholar 

  46. 46.

    Mukherjee, S. & Vannice, M. A. Solvent effects in liquid-phase reactions II. Kinetic modeling for citral hydrogenation. J. Catal. 243, 131–148 (2006).

    CAS  Article  Google Scholar 

  47. 47.

    Norskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).

    CAS  Article  Google Scholar 

  48. 48.

    Zhang, L., Pham, T. N., Faria, J. & Resasco, D. E. Improving the selectivity to C4 products in the aldol condensation of acetaldehyde in ethanol over faujasite zeolites. Appl. Catal. A 504, 119–129 (2015).

    CAS  Article  Google Scholar 

  49. 49.

    Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Article  Google Scholar 

  50. 50.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Article  Google Scholar 

  51. 51.

    Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    CAS  Article  Google Scholar 

  52. 52.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Article  Google Scholar 

  53. 53.

    Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  54. 54.

    Henkelman, G., Uberuaga, B. P. & Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    CAS  Article  Google Scholar 

  55. 55.

    Henkelman, G. & Jonsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).

    CAS  Article  Google Scholar 

  56. 56.

    Henkelman, G. & Jonsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 111, 7010–7022 (1999).

    CAS  Article  Google Scholar 

  57. 57.

    Campbell, C. T. & Sellers, J. R. V. The entropies of adsorbed molecules. J. Am. Chem. Soc. 134, 18109–18115 (2012).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, Basic Energy Sciences (grant no. DE-SC0018284). The computational research used the supercomputer resources of the National Energy Research Scientific Computing Centre (NERSC), the OU Supercomputing Centre for Education & Research (OSCER) at the University of Oklahoma and the Tandy Supercomputing Centre (TSC). The authors thank T. Sooknoi (King Mongkut’s Institute of Technology Ladkrabang, Thailand) for valuable discussions.

Author information

Affiliations

Authors

Contributions

Z.Z. conducted material synthesis, reaction tests and the H/D exchange experiment. R.B. completed the DFT calculations, the free energy calculations and the micro kinetic analysis. W.X., Y.L. and S.W. performed the DFT calculations. N.M.B. and S.P.C. conducted the catalyst characterization and analysed the data. D.-T.N. and U.N. performed the AIMD calculations. All authors discussed the results and commented on the manuscript. B.W. and D.E.R supervised the project.

Corresponding authors

Correspondence to Bin Wang or Daniel E. Resasco.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–17, Supplementary Table 1, Supplementary Methods, Supplementary Notes 1–4, Supplementary References

Supplementary Data 1

DFT structure of FAL*+H* on Pd in H2O

Supplementary Data 2

AIMD simulation of FAL at the water/Pd interface

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Bababrik, R., Xue, W. et al. Solvent-mediated charge separation drives alternative hydrogenation path of furanics in liquid water. Nat Catal 2, 431–436 (2019). https://doi.org/10.1038/s41929-019-0257-z

Download citation

Further reading