Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Organosodium compounds for catalytic cross-coupling

Abstract

Sodium is the most abundant alkali metal in the Earth’s crust and the ocean. However, organosodium compounds have long been considered inferior to organolithium compounds, which have instead dominated synthetic organic chemistry during the last century. Despite being largely neglected because of their reactive nature, it is worth re-exploring organosodium chemistry, in light of the growing demand for sustainable syntheses without recourse to less abundant elements such as lithium. Herein, we demonstrate that, contrary to common belief, organosodium compounds can be easily prepared from aryl chlorides or (hetero)arenes and easy-to-handle sodium dispersion and, after being transmetallated to the corresponding zinc and boron compounds, they readily participate in the Negishi and Suzuki–Miyaura cross-coupling reactions, fundamental carbon–carbon bond-forming reactions in organic synthesis. Direct coupling reactions with organosodium species were also possible.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Preparation of organometallic compounds and the subsequent cross-coupling reactions.
Fig. 2: Preparation of arylsodiums from aryl chlorides and sodium dispersion.
Fig. 3: Palladium-catalysed Negishi cross-coupling reactions using arylsodiums.
Fig. 4: Palladium-catalysed Suzuki–Miyaura cross-coupling reactions using arylsodiums.
Fig. 5: Palladium-catalysed direct cross-coupling reactions using arylsodiums.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Seyferth, D. Alkyl and aryl derivatives of the alkali metals: useful synthetic reagents as strong bases and potent nucleophiles. 1. Conversion of organic halides to organoalkali-metal compounds. Organometallics 25, 2–24 (2006).

    CAS  Article  Google Scholar 

  2. 2.

    Seyferth, D. Alkyl and aryl derivatives of the alkali metals: strong bases and reactive nucleophiles. 2. Wilhelm Schlenkas organoalkali-metal chemistry. The metal displacement and the transmetalation reactions. Metalation of weakly acidic hydrocarbons. Superbases. Organometallics 28, 2–33 (2009).

    CAS  Article  Google Scholar 

  3. 3.

    Schlosser, M. (ed.) Organometallics in Synthesis: A Manual 2nd edn (Wiley, Chichester, 2002).

  4. 4.

    Nobis, J. F., Moormeier, L. F. & Robinson, R. E. Organosodium compounds for preparation of other carbon–metal bonds. Adv. Chem. Ser. 23, 63–68 (1959).

    CAS  Article  Google Scholar 

  5. 5.

    Bockmühl, M. & Ehrhart, G. Sodium phenyl and its derivatives and process of preparing them. Reichspatent 622,875 (1935) and US patent 2,012,372 (1935).

  6. 6.

    Gilman, H. & Wright, G. F. The mechanism of the Wurtz–Fittig reaction. The direct preparation of an organosodium (potassium) compound from an RX compound. J. Am. Chem. Soc. 55, 2893–2896 (1933).

    CAS  Article  Google Scholar 

  7. 7.

    Benkeser, R. A., Foster, D. J., Sauve, D. M. & Nobis, J. F. Metalations with organosodium compounds. Chem. Rev. 57, 867–894 (1957).

    CAS  Article  Google Scholar 

  8. 8.

    Schlosser, M. Organosodium and organopotassium compounds. Part I: Properties and reactions. Angew. Chem. Int. Ed. 3, 287–306 (1964).

    Article  Google Scholar 

  9. 9.

    Schlosser, M. Organosodium and organopotassium compounds. Part II: Preparation and synthetic applications. Angew. Chem. Int. Ed. 3, 362–373 (1964).

    Article  Google Scholar 

  10. 10.

    Gissot, A. et al. Directed ortho-metalation, a new insight into organosodium chemistry. Angew. Chem. Int. Ed. 41, 340–343 (2002).

    CAS  Article  Google Scholar 

  11. 11.

    Ma, Y., Algera, R. F. & Collum, D. B. Sodium diisopropylamide in N,N-dimethylethylamine: reactivity, selectivity, and synthetic utility. J. Org. Chem. 81, 11312–11315 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Huang, Y., Chan, G. H. & Chiba, S. Amide-directed C–H sodiation by a sodium hydride/iodide composite. Angew. Chem. Int. Ed. 56, 6544–6547 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Weidmann, N., Ketels, M. & Knochel, P. Sodiation of arenes and heteroarenes in continuous flow. Angew. Chem. Int. Ed. 57, 10748–10751 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    The Nobel Prize in Chemistry 2010. The Nobel Prize. https://www.nobelprize.org/prizes/chemistry/2010/summary/ (2010).

  15. 15.

    Johansson Seechurn, C. C. C., Kitching, M. O., Colacot, T. J. & Snieckus, V. Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. 51, 5062–5085 (2012).

    CAS  Article  Google Scholar 

  16. 16.

    de Meijere, A., Bräse, S. & Oestreich, M. (eds) Metal-Catalyzed Cross-Coupling Reactions and More Vols 1, 2 and 3 (Wiley-VCH, Weinheim, 2014).

  17. 17.

    Negishi, E. Magical power of transition metals: past, present, and future. Angew. Chem. Int. Ed. 50, 6738–6764 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    Krasovskiy, A. & Knochel, P. A LiCl-mediated Br/Mg exchange reaction for the preparation of functionalized aryl- and heteroarylmagnesium compounds from organic bromides. Angew. Chem. Int. Ed. 43, 3333–3336 (2004).

    CAS  Article  Google Scholar 

  19. 19.

    Nakamura, E. & Sato, K. Managing the scarcity of chemical elements. Nat. Mater. 10, 158–161 (2011).

    CAS  Article  Google Scholar 

  20. 20.

    Yabuuchi, N., Kubota, K., Dahbi, M. & Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    Vesborg, P. C. K. & Jaramillo, T. F. Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy. RSC Adv. 2, 7933–7947 (2012).

    CAS  Article  Google Scholar 

  22. 22.

    Nobis, J. F. & Moormeier, L. F. Phenylsodium route to phenylacetic acid and dimethyl phenylmalonate. Ind. Eng. Chem. 46, 539–544 (1954).

    CAS  Article  Google Scholar 

  23. 23.

    Screttas, C. G., Steele, B. R., Micha-Screttas, M. & Heropoulos, G. A. Aryllithiums with increasing steric crowding and lipophilicity prepared from chlorides in diethyl ether. The first directly prepared room-temperature-stable dilithioarenes. Org. Lett. 14, 5680–5683 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    Valente, C. et al. The development of bulky palladium NHC complexes for the most-challenging cross-coupling reactions. Angew. Chem. Int. Ed. 51, 3314–3332 (2012).

    CAS  Article  Google Scholar 

  25. 25.

    Kawamorita, S., Ohmiya, H., Iwai, T. & Sawamura, M. Palladium-catalyzed borylation of sterically demanding aryl halides with a silica-supported compact phosphane ligand. Angew. Chem. Int. Ed. 50, 8363–8366 (2011).

    CAS  Article  Google Scholar 

  26. 26.

    Mkhalid, I. A. I., Barnard, J. H., Marder, T. B., Murphy, J. M. & Hartwig, J. F. C–H activation for the construction of C–B bonds. Chem. Rev. 110, 890–931 (2010).

    CAS  Article  Google Scholar 

  27. 27.

    Giannerini, M., Fañanás-Mastral, M. & Feringa, B. L. Direct catalytic cross-coupling of organolithium compounds. Nat. Chem. 5, 667–672 (2013).

    CAS  Article  Google Scholar 

  28. 28.

    Pinxterhuis, E. B., Giannerini, M., Hornillos, V. & Feringa, B. L. Fast, greener and scalable direct coupling of organolithium compounds with no additional solvents. Nat. Commun. 7, 11698 (2016).

    Article  Google Scholar 

  29. 29.

    Jia, Z., Liu, Q., Peng, X.-S. & Wong, H. N. C. Iron-catalysed cross-coupling of organolithium compounds with organic halides. Nat. Commun. 7, 10614 (2016).

    Article  Google Scholar 

  30. 30.

    Leiendecker, M., Hsiao, C.-C., Guo, L., Alandini, N. & Rueping, M. Metal-catalyzed dealkoxylative Caryl–Csp3 cross-coupling—replacement of aromatic methoxy groups of aryl ethers by employing a functionalized nucleophile. Angew. Chem. Int. Ed. 53, 12912–12915 (2014).

    CAS  Article  Google Scholar 

  31. 31.

    Yang, Z.-K. et al. Cross-coupling of organolithium with ethers or aryl ammonium salts by C–O or C–N bond cleavage. Chem. Eur. J. 22, 15693–15699 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    Giannerini, M., Hornillos, V., Vila, C., Fañanás-Mastral, M. & Feringa, B. L. Hindered aryllithium reagents as partners in palladium-catalyzed cross-coupling: synthesis of tri- and tetra-ortho-substituted biaryls under ambient conditions. Angew. Chem. Int. Ed. 52, 13329–13333 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    Hornillos, V., Giannerini, M., Vila, C., Fañanás-Mastral, M. & Feringa, B. L. Catalytic direct cross-coupling of organolithium compounds with aryl chlorides. Org. Lett. 15, 5114–5117 (2013).

    CAS  Article  Google Scholar 

  34. 34.

    Ehrhart, G. Über umsetzungen mit phenylnatrium. Chem. Ber. 96, 2042–2046 (1963).

    CAS  Article  Google Scholar 

  35. 35.

    Becht, J.-M., Gissot, A., Wagner, A. & Mioskowski, C. An efficient synthesis of biaryls via noncatalysed anionic coupling of an arylsodium with haloarenes. Tetrahedron Lett. 45, 9331–9333 (2004).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank Okayama University and KOBELCO ECO-Solutions Co., Ltd for financial support.

Author information

Affiliations

Authors

Contributions

S.A. and K.T. conceived and designed the experiments. H.N. performed the experiments. S.A. and K.T. prepared the manuscript. All authors contributed to discussions.

Corresponding authors

Correspondence to Sobi Asako or Kazuhiko Takai.

Ethics declarations

Competing interests

S.A. and K.T. are listed as inventors on patent applications (JP2017/247538, JP2018/005719, JP2018/099899) that cover the cross-coupling reactions presented in this paper.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–4, Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Asako, S., Nakajima, H. & Takai, K. Organosodium compounds for catalytic cross-coupling. Nat Catal 2, 297–303 (2019). https://doi.org/10.1038/s41929-019-0250-6

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing