Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Asymmetric construction of atropisomeric biaryls via a redox neutral cross-coupling strategy

Abstract

Atropisomerically enriched biaryl frameworks are ubiquitous in many fields of chemistry. Enantioselective aryl–aryl cross-coupling provides the most straightforward entry to atropisomeric biaryls, with remarkable application potential in the field of chemical science. However, their development is hindered due to the lack of convenient and pragmatic protocols. Here, we report a method for the asymmetric synthesis of a myriad of 2-amino-2′-hydroxy-1,1′-binaphthyl (NOBIN) and 1,1’-binaphthyl-2,2’-diamine (BINAM) derivatives in excellent yields and enantioselectivities via a redox-neutral cross-coupling protocol. Two complementary systems were devised employing a chiral phosphoric acid–salt complex or Ni(OTf)2/chiral bis(oxazoline) ligand catalytic system for accessing atropisomeric NOBIN and BINAM derivatives, respectively. This work provides an alternative avenue to enantioenriched biaryls, and provides the capability to explore the synthetic and catalytic potentials of NOBIN- and BINAM-based frameworks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Axially chiral biaryl molecules and reaction development.
Fig. 2: Substrate generality for CPA-salt catalysed asymmetric cross-coupling.
Fig. 3: Substrate scope of BINAM derivatives via Ni(OTf)2/SaBOX-catalysed asymmetric cross-coupling.
Fig. 4: Substrate scope of NOBIN derivatives via Ni(OTf)2/SaBOX-catalysed asymmetric cross-coupling.
Fig. 5: Synthetic transformations and mechanistic studies.
Fig. 6: Plausible mechanism for Ni-catalysed asymmetric cross-coupling.

Similar content being viewed by others

Data availability

The X-ray crystallographic coordinates for structures of 3a-2 and 5o reported in this Article have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition numbers CCDC 1846849 (3a-2) and 1846841 (5o). These data can be obtained free of charge from http://www.ccdc.cam.ac.uk/data_request/cif. Experimental procedures and characterization of the new compounds are available in the Supplementary Information. All other data are available from the authors upon reasonable request.

References

  1. Bringmann, G., Gulder, T., Gulder, T. A. M. & Breuning, M. Atroposelective total synthesis of axially chiral biaryl natural products. Chem. Rev. 111, 563–639 (2011).

    Article  CAS  Google Scholar 

  2. McCormick, M. H., Stark, W. M., Pittenger, G. E., Pittenger, R. C. & McGuire, J. M. Vancomycin, a new antibiotic. I. Chemical and biologic properties. Antibiot. Annu. 56, 606–611 (1955).

    Google Scholar 

  3. Bremner, J. B. et al. Synthesis and antibacterial studies of binaphthyl-based tripeptoids. Bioorg. Med. Chem. 18, 2611–2620 (2010).

    Article  CAS  Google Scholar 

  4. Cram, D. J. & Cram, J. M. Host–guest chemistry. Science 183, 803–809 (1974).

    Article  CAS  Google Scholar 

  5. Pu, L. Enantioselective fluorescent sensors: a tale of BINOL. Acc. Chem. Res. 45, 150–163 (2012).

    Article  CAS  Google Scholar 

  6. Sogah, G. D. Y. & Cram, D. J. Total chromatographic optical resolution of α-amino acid and ester salts through chiral recognition by a host covalently bound to polystyrene resin. J. Am. Chem. Soc. 98, 3038–3041 (1976).

    Article  CAS  Google Scholar 

  7. Li, Q., Green, L., Venkataraman, N., Shiyanovskaya, I. & Khan, A. Reversible photoswitchable axially chiral dopants with high helical twisting power. J. Am. Chem. Soc. 129, 12908–12909 (2007).

    Article  CAS  Google Scholar 

  8. Takaishi, K., Yasui, M. & Ema, T. Binaphthyl-bipyridyl cyclic dyads as a chiroptical switch. J. Am. Chem. Soc. 140, 5334–5338 (2018).

    Article  CAS  Google Scholar 

  9. Ritter, N., Senkovska, I., Kaskel, S. & Weber, J. Towards chiral microporous soluble polymers-binaphthalene-based polyimides. Macromol. Rapid Commun. 32, 438–443 (2011).

    Article  CAS  Google Scholar 

  10. Cui, Y., Lee, S. J. & Lin, W. Interlocked chiral nanotubes assembled from quintuple helices. J. Am. Chem. Soc. 125, 6014–6015 (2003).

    Article  CAS  Google Scholar 

  11. Noyori, R. & Takaya, H. BINAP: an efficient chiral element for asymmetric catalysis. Acc. Chem. Res. 23, 345–350 (1990).

    Article  CAS  Google Scholar 

  12. Pu, L. 1,1′-Binaphthyl dimers, oligomers, and polymers: molecular recognition, asymmetric catalysis, and new materials. Chem. Rev. 98, 2405–2494 (1998).

    Article  CAS  Google Scholar 

  13. Kočovský, P., Vyskočil, Š. & Smrčina, M. Non-symmetrically substituted 1,1′-binaphthyls in enantioselective catalysis. Chem. Rev. 103, 3213–3245 (2003).

    Article  Google Scholar 

  14. Chen, Y., Yekta, S. & Yudin, A. K. Modified BINOL ligands in asymmetric catalysis. Chem. Rev. 103, 3155–3211 (2003).

    Article  CAS  Google Scholar 

  15. Ding, K., Guo, H., Li, X., Yuan, Y. & Wang, Y. Synthesis of NOBIN derivatives for asymmetric catalysis. Top. Catal. 35, 105–116 (2005).

    Article  CAS  Google Scholar 

  16. Ding, K., Li, X., Ji, B., Guo, H. & Kitamura, M. Ten years of research on NOBIN chemistry. Curr. Org. Syn. 2, 499–545 (2005).

    Article  CAS  Google Scholar 

  17. Berthod, M., Mignani, G., Woodward, G. & Lemaire, M. Modified BINAP: the how and the why. Chem. Rev. 105, 1801–1836 (2005).

    Article  CAS  Google Scholar 

  18. Brunel, J. M. BINOL: a versatile chiral reagent. Chem. Rev. 107, PR1–PR45 (2007).

    Article  CAS  Google Scholar 

  19. Kozlowski, M. C., Morgan, B. J. & Linton, E. C. Total synthesis of chiral biaryl natural products by asymmetric biaryl coupling. Chem. Soc. Rev. 38, 3193–3207 (2009).

    Article  CAS  Google Scholar 

  20. Wencel-Delord, J., Panossian, A., Leroux, F. R. & Colobert, F. Recent advances and new concepts for the synthesis of axially stereoenriched biaryls. Chem. Soc. Rev. 44, 3418–3430 (2015).

    Article  CAS  Google Scholar 

  21. Zhang, D. & Wang, Q. Palladium catalyzed asymmetric Suzuki–Miyaura coupling reactions to axially chiral biaryl compounds: chiral ligands and recent advances. Coord. Chem. Rev. 286, 1–16 (2015).

    Article  CAS  Google Scholar 

  22. Loxq, P., Manoury, E., Poli, R., Deydier, E. & Labande, A. Synthesis of axially chiral biaryl compounds by asymmetric catalytic reactions with transition metals. Coord. Chem. Rev. 308, 131–190 (2016).

    Article  CAS  Google Scholar 

  23. Zilate, B., Castrogiovanni, A. & Sparr, C. Catalyst-controlled stereoselective synthesis of atropisomers. ACS Catal. 8, 2981–2988 (2018).

    Article  CAS  Google Scholar 

  24. Yamaguchi, K., Yamaguchi, J., Studerb, A. & Itami, K. Hindered biaryls by C–H coupling: bisoxazoline-Pd catalysis leading to enantioselective C–H coupling. Chem. Sci. 3, 2165–2169 (2012).

    Article  CAS  Google Scholar 

  25. Yamaguchi, K., Kondo, H., Yamaguchi, J. & Itami, K. Aromatic C–H coupling with hindered arylboronic acids by Pd/Fe dual catalysts. Chem. Sci. 4, 3753–3757 (2013).

    Article  CAS  Google Scholar 

  26. Dherbassy, Q., Djukic, J.-P., Wencel-Delord, J. & Colobert, F. Two stereoinduction events in one C–H activation step: a route towards terphenyl ligands with two atropisomeric axes. Angew. Chem. Int. Ed. 57, 4668–4672 (2018).

    Article  CAS  Google Scholar 

  27. Smrčina, M., Lorenc, M., Hanuš, V. & Kočovský, P. A facile synthesis of 2-amino-2′-hydroxy-1,1′-binaphthyl and 2,2′-diamino-1,1′-binaphthyl by oxidative coupling using copper (ii) chloride. Synlett 1991, 231–232 (1991).

    Article  Google Scholar 

  28. Smrčina, M. et al. Selective cross-coupling of 2-naphthol and 2-naphthamine derivatives. A facile synthesis of 2,2′,3-trisubstituted and 2,2′,3,3′-tetrasubstituted 1,1′-binaphthyls. J. Org. Chem. 59, 2156–2163 (1994).

    Article  Google Scholar 

  29. Qi, L.-W., Mao, J.-H. & Tan, B. Organocatalytic asymmetric arylation of indoles enabled by azo groups. Nat. Chem. 10, 58–64 (2018).

    Article  CAS  Google Scholar 

  30. Singer, R. A. & Buchwald, S. L. Preparation of 2-amino-2′-hydroxy-1,1′-binaphthyl and N-arylated 2-amino-1,1′-binaphthyl derivatives via palladium-catalyzed amination. Tetrahedron Lett. 40, 1095–1098 (1999).

    Article  CAS  Google Scholar 

  31. De, C. K., Pesciaioli, F. & List, B. Catalytic asymmetric benzidine rearrangement. Angew. Chem. Int. Ed. 52, 9293–9295 (2013).

    Article  CAS  Google Scholar 

  32. Li, G. et al. Organocatalytic aryl–aryl bond formation: an atroposelective [3,3]-rearrangement approach to BINAM dericatives. J. Am. Chem. Soc. 135, 7414–7417 (2013).

    Article  CAS  Google Scholar 

  33. Kumarasamy, E., Raghunathan, R., Sibi, M. P. & Sivaguru, J. Nonbiaryl and heterobiaryl atropisomers: molecular templates with promise for atropselective chemical transformations. Chem. Rev. 115, 11239–11300 (2015).

    Article  CAS  Google Scholar 

  34. Gustafson, J. L., Lim, D. & Miller, S. J. Dynamic kinetic resolution of biaryl atropisomers via peptide-catalysed asymmetric bromination. Science 328, 1251–1255 (2010).

    Article  CAS  Google Scholar 

  35. Mori, K. et al. Enantioselective synthesis of multisubstituted biaryl skeleton by chiral phosphoric acid catalysed desymmetrization/kinetic resolution sequence. J. Am. Chem. Soc. 135, 3964–3970 (2013).

    Article  CAS  Google Scholar 

  36. Barrett, K. T., Metrano, A. J., Rablen, P. R. & Miller, S. J. Spontaneous transfer of chirality in an atropisomerically enriched two-axis system. Nature 509, 71–75 (2014).

    Article  CAS  Google Scholar 

  37. Wang, J.-Z. et al. Symmetric in cascade chirality-transfer processes: a catalytic atroposelective direct arylation approach to BINOL derivatives. J. Am. Chem. Soc. 138, 5202–5205 (2016).

    Article  CAS  Google Scholar 

  38. Jolliffe, J. D., Armstrong, R. J. & Smith, M. D. Catalytic enantioselective synthesis of atropisomeric biaryls by a cation-directed O-alkylation. Nat. Chem. 9, 558–562 (2017).

    Article  CAS  Google Scholar 

  39. Wang, Y.-B. & Tan, B. Construction of axially chiral compounds via asymmetric organocatalysis. Acc. Chem. Res. 51, 534–547 (2018).

    Article  CAS  Google Scholar 

  40. Akiyama, T., Itoh, J., Yokota, K. & Fuchibe, K. Enantioselective Mannich-type reaction catalyzed by a chiral Brønsted acid. Angew. Chem. Int. Ed. 43, 1566–1568 (2004).

    Article  CAS  Google Scholar 

  41. Uraguchi, D. & Terada, M. Chiral Brønsted acid-catalyzed direct Mannich reactions via electrophilic activation. J. Am. Chem. Soc. 126, 5356–5357 (2004).

    Article  CAS  Google Scholar 

  42. Satyanarayana, T., Abraham, S. & Kagan, H. B. Nonlinear effects in asymmetric catalysis. Angew. Chem. Int. Ed. 48, 456–494 (2009).

    Article  CAS  Google Scholar 

  43. Rauniyar, V. et al. Asymmetric electrophilic fluorination using an anionic chiral phase-transfer catalyst. Science 334, 1681–1683 (2011).

    Article  CAS  Google Scholar 

  44. Pellissier, H. Recent developments in enantioselective nickel(ii)-catalyzed conjugate additions. Adv. Synth. Catal. 357, 2745–2780 (2015).

    Article  CAS  Google Scholar 

  45. Liao, S., Sun, X.-L. & Tang, Y. Side arm strategy for catalyst design: modifying bisoxazolines for remote control of enantioselection and related. Acc. Chem. Res. 47, 2260–2272 (2014).

    Article  CAS  Google Scholar 

  46. Desimoni, G., Faita, G. & Jørgensen, K. A. C 2-Symmetric chiral bis(oxazoline) ligands in asymmetric catalysis. Chem. Rev. 106, 3561–3651 (2006).

    Article  CAS  Google Scholar 

  47. Evans, D. A. & Thomson, R. J. Ni(ii) Tol-BINAP-catalyzed enantioselective orthoester alkylations of N-acylthiazolidinethiones. J. Am. Chem. Soc. 127, 10506–10507 (2005).

    Article  CAS  Google Scholar 

  48. Evans, D. A., Downey, C. W. & Hubbs, J. L. Ni(ii) bis(oxazoline)-catalyzed enantioselective syn aldol reactions of N-propionylthiazolidinethiones in the presence of silyl triflates. J. Am. Chem. Soc. 125, 8706–8707 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (grants nos. 21772081, 21825105, 21702092 and 21801117), Shenzhen Nobel Prize Scientists Laboratory Project (C17213101) and Shenzhen Special Funds for the Development of Biomedicine, Internet, New Energy and New Material Industries (JCYJ20170412151701379 and KQJSCX20170328153203). We dedicate this paper to the memory of L.-R. Jin.

Author information

Authors and Affiliations

Authors

Contributions

B.T. and J.W. conceived and directed the project. L.-W.Q. and S.L. designed and performed experiments and prepared the Supplementary Information. S.-H.X. helped collect some new compounds and in analysing the data. B.T., J.W. and S.-H.X. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Jun (Joelle) Wang or Bin Tan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–5, Supplementary Tables 1–11, Supplementary References.

Compound 3a-2

Crystallographic data for compound 3a-2

Compound 5o

Crystallographic data for compound 5o

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, LW., Li, S., Xiang, SH. et al. Asymmetric construction of atropisomeric biaryls via a redox neutral cross-coupling strategy. Nat Catal 2, 314–323 (2019). https://doi.org/10.1038/s41929-019-0247-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0247-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing