Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Homocoupling-free iron-catalysed twofold C–H activation/cross-couplings of aromatics via transient connection of reactants


Twofold C–H activation/cross-coupling of stoichiometric amounts of organic molecules, R1–H and R2–H, to form an R1–R2 product free of homocoupling products is a goal in the activation of unreactive C–H bonds, as it will dramatically simplify organic synthesis. No reliable strategy to eliminate the homocoupling side products effectively without recourse to the use of an excess of one reactant over another is known. We report herein that a transient connection of two reactants by an anionic group appended to one reactant achieves this goal under mildly oxidative iron-catalysed conditions, through the formation of a productive heteroleptic R1–M–R2 intermediate. We utilized an N-(quinolin-8-yl)amide anion for the temporary connection and cross-coupled a stoichiometric mixture of aromatics in high yield without any trace of homocoupling products. A short-step synthesis of several donor/acceptor thiophene compounds and carbon/sulfur-bridged flat conjugated systems illustrates the utility of this method to streamline organic synthesis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2: Iron-catalysed twofold C–H activation/cross-coupling and its application to material synthesis.
Fig. 3: Reaction scope of iron-catalysed twofold C–H activation/cross-coupling of heteroarenes with (hetero)aryl and alkenyl carboxamides.
Fig. 4: Reaction scope of iron-catalysed twofold C–H activation/cross-coupling of carboxamides with arenes.
Fig. 5: Iron-catalysed twofold C–H activation/cross-coupling using heteroarenes of interest in materials science.
Fig. 6: Mechanistic investigation.

Data availability

All data supporting the findings of this study, including experimental procedures and compound characterization, are available within the paper and its Supplementary Information, or from the authors upon reasonable request.


  1. 1.

    Murai, S. et al. Efficient catalytic addition of carbon–hydrogen bonds to olefins. Nature 366, 529–531 (1993).

    CAS  Article  Google Scholar 

  2. 2.

    Arndtsen, B. A., Bergman, R. G., Mobley, T. A. & Peterson, T. H. Selective intermolecular carbon–hydrogen bond activation by synthetic metal complexes in homogeneous solution. Acc. Chem. Res. 28, 154–162 (1995).

    CAS  Article  Google Scholar 

  3. 3.

    Shilov, A. E. & Shul’pin, G. B. Activation of C–H bonds by metal complexes. Chem. Rev. 97, 2879–2932 (1997).

    CAS  Article  Google Scholar 

  4. 4.

    Crabtree, R. H. & Lei, A. Introduction: CH activation. Chem. Rev. 117, 8481–8482 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    Dong, Z., Ren, Z., Thompson, S. J., Xu, Y. & Dong, G. Transition-metal catalyzed alkylation using alkenes. Chem. Rev. 117, 9333–9403 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C–H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010).

    CAS  Article  Google Scholar 

  7. 7.

    Roudesly, F., Oble, J. & Poli, G. Metal-catalyzed C–H activation/functionalization: the fundamentals. J. Mol. Catal. A 426, 275–296 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    Kuhl, N., Hopkinson, M. N., Wencel-Delord, J. & Glorius, F. Beyond directing groups: transition-metal-catalyzed C–H activation of simple arenes. Angew. Chem. Int. Ed. 51, 10236–10254 (2012).

    CAS  Article  Google Scholar 

  9. 9.

    Chen, X., Engle, K. M., Wang, D.-H. & Yu, J.-Q. Palladium(ii)-catalyzed C–H activation/C–C cross-coupling reactions: versatility and practicality. Angew. Chem. Int. Ed. 48, 5094–5115 (2009).

    CAS  Article  Google Scholar 

  10. 10.

    Yang, Y., Lan, J. & You, J. Oxidative C–H/C–H coupling reactions between two (hetero)arenes. Chem. Rev. 117, 8787–8863 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Cho, S. H., Kim, J. Y., Kwak, J. & Chang, S. Recent advances in the transition metal-catalyzed twofold oxidative C–H bond activation strategy for C–C and C–N bond formation. Chem. Soc. Rev. 40, 5068–5083 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    Stuart, D. R. & Fagnou, K. The catalytic cross-coupling of unactivated arenes. Science 316, 1172–1175 (2007).

    CAS  Article  Google Scholar 

  13. 13.

    Xi, P. et al. Palladium(ii)-catalyzed oxidative C–H/C–H cross-coupling of heteroarenes. J. Am. Chem. Soc. 132, 1822–1824 (2010).

    CAS  Article  Google Scholar 

  14. 14.

    Brasche, G., García-Fortanet, J. & Buchwald, S. L. Twofold C–H functionalization: palladium-catalyzed ortho arylation of anilides. Org. Lett. 10, 2207–2210 (2008).

    CAS  Article  Google Scholar 

  15. 15.

    Hull, K. L. & Sanford, M. S. Catalytic and highly regioselective cross-coupling of aromatic C–H substrates. J. Am. Chem. Soc. 129, 11904–11905 (2007).

    CAS  Article  Google Scholar 

  16. 16.

    Wang, X., Leow, D. & Yu, J.-Q. Pd(ii)-catalyzed para-selective C–H arylation of monosubstituted arenes. J. Am. Chem. Soc. 133, 13864–13867 (2011).

    CAS  Article  Google Scholar 

  17. 17.

    Aihira, Y., Tobisu, M., Fukumoto, Y. & Chatani, N. Ni(ii)-catalyzed oxidative coupling between C(sp 2)–H in benzamides and C(sp 3)–H in toluene derivatives. J. Am. Chem. Soc. 136, 15509–15512 (2014).

    Article  Google Scholar 

  18. 18.

    Cambeiro, X. C., Ahlsten, N. & Larrosa, I. Au-catalyzed cross-coupling of arenes via double C–H activation. J. Am. Chem. Soc. 137, 15636–15639 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    Zhang, L. et al. Experimental and theoretical studies on Ru(ii)-catalyzed oxidative C−H/C−H coupling of phenols with aromatic amides using air as oxidant: scope, synthetic applications, and mechanistic insights. ACS Catal. 8, 8324–8335 (2018).

    CAS  Article  Google Scholar 

  20. 20.

    Masui, K., Ikegami, H. & Mori, A. Palladium-catalyzed C–H homocoupling of thiophenes: facile construction of bithiophene structure. J. Am. Chem. Soc. 126, 5074–5075 (2004).

    CAS  Article  Google Scholar 

  21. 21.

    Shang, R., Ilies, L. & Nakamura, E. Iron-catalyzed C–H bond activation. Chem. Rev. 117, 9086–9139 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    Cera, G. & Ackermann, L. Iron-catalyzed C–H functionalization processes. Top. Curr. Chem. 374, 191–224 (2016).

    Google Scholar 

  23. 23.

    Shang, R., Ilies, L., Asako, S. & Nakamura, E. Iron-catalyzed C(sp 2)–H bond functionalization with organoboron compounds. J. Am. Chem. Soc. 136, 14349–14352 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    Shang, R., Ilies, L. & Nakamura, E. Iron-catalyzed directed C(sp 2)–H and C(sp 3)–H functionalization with trimethylaluminum. J. Am. Chem. Soc. 137, 7660–7663 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    Shang, R., Ilies, L. & Nakamura, E. Iron-catalyzed ortho C–H methylation of aromatics bearing a simple carbonyl group with methylaluminum and tridentate phosphine ligand. J. Am. Chem. Soc. 138, 10132–10135 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    Daugulis, O., Roane, J. & Tran, D. Bidentate, monoamionic auxiliary-directed functionalization of carbon–hydrogen bonds. Acc. Chem. Res. 48, 1053–1064 (2015).

    CAS  Article  Google Scholar 

  27. 27.

    Shang, R., Ilies, L., Matsumoto, A. & Nakamura, E. β-Arylation of carboxamides via iron-catalyzed C(sp 3)–H bond activation. J. Am. Chem. Soc. 135, 6030–6032 (2013).

    CAS  Article  Google Scholar 

  28. 28.

    Asako, S., Ilies, L. & Nakamura, E. Iron-catalyzed ortho-allylation of aromatic carboxamides with allyl ethers. J. Am. Chem. Soc. 135, 17755–17757 (2013).

    CAS  Article  Google Scholar 

  29. 29.

    Tang, D.-T. D., Collins, K. D., Ernst, J. B. & Glorius, F. Pd/C as a catalyst for completely regioselective C–H functionalization of thiophenes under mild conditions. Angew. Chem. Int. Ed. 53, 1809–1813 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    Colletto, C., Panigrahi, A., Fernández-Casado, J. & Larrosa, I. Ag(i)–C–H activation enables near-room-temperature direct α-arylation of benzo[b]thiophenes. J. Am. Chem. Soc. 140, 9638–9643 (2018).

    CAS  Article  Google Scholar 

  31. 31.

    Wong, K.-T. et al. Synthesis and structure of novel heteroarene-fused coplanar, π-conjugated chromophores. Org. Lett. 8, 5033–5036 (2006).

    CAS  Article  Google Scholar 

  32. 32.

    Zhu, X., Tsuji, H., Navarrete, J. T. L., Casado, J. & Nakamura, E. Carbon-bridged oligo(phenylenevinylene)s: stable p-systems with high responsiveness to doping and excitation. J. Am. Chem. Soc. 134, 19254–19259 (2012).

    CAS  Article  Google Scholar 

  33. 33.

    Molina-Ontoria, A. et al. Benzotrithiophene-based hole-transporting materials for 18.2% perovskite solar cells. Angew. Chem. Int. Ed. 55, 6270–6274 (2016).

    CAS  Article  Google Scholar 

  34. 34.

    Nagano, T. & Hayashi, T. Iron-catalyzed oxidative homo-coupling of aryl Grignard reagents. Org. Lett. 7, 491–493 (2005).

    CAS  Article  Google Scholar 

  35. 35.

    Yanagisawa, S., Ueda, K., Sekizawa, H. & Itami, K. Programmed synthesis of tetraarylthiophenes through sequential C−H arylation. J. Am. Chem. Soc. 131, 14622–14623 (2009).

    CAS  Article  Google Scholar 

  36. 36.

    Ilies, L., Ichikawa, S., Asako, S., Matsubara, T. & Nakamura, E. Iron-catalyzed directed alkylation of alkenes and arenes with alkylzinc halides. Adv. Synth. Catal. 357, 2175–2179 (2015).

    CAS  Article  Google Scholar 

  37. 37.

    Shen, K., Fu, Y., Li, J.-N., Liu, L. & Guo, Q.-X. What are the pK a values of C–H bonds in aromatic heterocyclic compounds in DMSO? Tetrahedron 63, 1568–1576 (2007).

    CAS  Article  Google Scholar 

  38. 38.

    Sawamura, Y. et al. Iron-catalyzed Friedel–Crafts benzylation with benzyl TMS ethers at room temperature. Chem. Eur. J. 20, 510–516 (2014).

    Article  Google Scholar 

  39. 39.

    Ibanez, J. G. et al. Conducting polymers in the fields of energy, environmental remediation, and chemical–chiral sensors. Chem. Rev. 118, 4731–4816 (2018).

    CAS  Article  Google Scholar 

  40. 40.

    Guo, Y. et al. Citric acid modulated growth of oriented lead perovskite crystals for efficient solar cells. J. Am. Chem. Soc. 139, 9598–9604 (2017).

    CAS  Article  Google Scholar 

  41. 41.

    Groenendaal, L., Jonas, F., Freitag, D., Pielartzik, H. & Reynolds, J. R. Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mater. 12, 481–494 (2000).

    CAS  Article  Google Scholar 

  42. 42.

    Osaka, I. et al. Synthesis, characterization, and transistor and solar cell applications of a naphthobisthiadiazole-based semiconducting polymer. J. Am. Chem. Soc. 134, 3498–3507 (2012).

    CAS  Article  Google Scholar 

  43. 43.

    Sun, Y. et al. Two-state reactivity in low-valent iron-mediated C–H activation and the implications for other first-row transition metals. J. Am. Chem. Soc. 138, 3715–3730 (2016).

    CAS  Article  Google Scholar 

Download references


The authors thank MEXT for financial support (KAKENHI Grant-in-Aid for Scientific Research (S) 15H05754 to E.N., JP18H04238 in Precisely Designed Catalysts with Customized Scaffolding to L.I. and KAKENHI Grant-in-Aid for Young Scientists (B) JP17K14480 to R.S.).

Author information




E.N. and R.S. guided the research and wrote the manuscript. T.D. performed the experiments to study the scope, application and mechanism. All authors contributed to designing the experiments, analysing the data and editing the manuscript.

Corresponding authors

Correspondence to Rui Shang or Eiichi Nakamura.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–4, Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Doba, T., Matsubara, T., Ilies, L. et al. Homocoupling-free iron-catalysed twofold C–H activation/cross-couplings of aromatics via transient connection of reactants. Nat Catal 2, 400–406 (2019).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing