Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts

Abstract

Photocatalytic water splitting using particulate semiconductor materials has been studied as a simple means of hydrogen production. However, there are still many obstacles to the development of complete, practical and renewable solar hydrogen production processes. This review discusses particulate photocatalyst systems intended for large-scale solar hydrogen production via water splitting, focusing on their current status and potential impact. The cost and efficiency targets for solar-to-fuel conversion on a practical scale are also reviewed, based on the maximum allowable cost of solar hydrogen production systems, which has been estimated to be US$102 m–2, at most. Particulate photocatalyst material design principles are discussed, using efficient oxide photocatalysts as examples. Approaches to constructing photocatalytic reactors extensible to large areas are also introduced. Finally, challenges related to the development of efficient and inexpensive photocatalyst systems and potentially useful analytical methods are outlined.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Schematics of four reactor types.
Fig. 2: A proposed scheme for large-scale hydrogen production via solar water splitting.
Fig. 3: Energy diagrams for photocatalytic water splitting.
Fig. 4: Mechanism of highly efficient photocatalytic water splitting over NiO/NaTaO3:La photocatalysts.
Fig. 5: A largescale photoreactor for photocatalytic reactions with an immobilized photocatalyst.
Fig. 6: 1 × 1 m Water-splitting panels containing SrTiO3:Al sheets.
Fig. 7: Schematic diagrams of water splitting on narrow-band-gap semiconductor photocatalysts.

References

  1. BP Statistical Review of World Energy (British Petroleum, 2018).

  2. BP Energy Outlook 2018 Edition (British Petroleum, 2018).

  3. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    Article  CAS  PubMed  Google Scholar 

  4. Domen, K., Kondo, J. N., Hara, M. & Takata, T. Photo- and mechano-catalytic overall water splitting reactions to form hydrogen and oxygen on heterogeneous catalysts. Bull. Chem. Soc. Jpn. 73, 1307–1331 (2000).

    Article  CAS  Google Scholar 

  5. Kudo, A., Kato, H. & Tsuji, I. Strategies for the development of visible-light-driven photocatalysts for water splitting. Chem. Lett. 33, 1534–1539 (2004).

    Article  CAS  Google Scholar 

  6. Kudo, A., Niishiro, R., Iwase, A. & Kato, H. Effects of doping of metal cations on morphology, activity, and visible light response of photocatalysts. Chem. Phys. 339, 104–110 (2007).

    Article  CAS  Google Scholar 

  7. Maeda, K. & Domen, K. New non-oxide photocatalysts designed for overall water splitting under visible light. J. Phys. Chem. C 111, 7851–7861 (2007).

    Article  CAS  Google Scholar 

  8. Osterloh, F. E. Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 20, 35–54 (2008).

    Article  CAS  Google Scholar 

  9. Kudo, A. & Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009). Heterogeneous photocatalyst materials for water splitting are reviewed comprehensively along with the basis of photocatalytic water splitting.

    Article  CAS  PubMed  Google Scholar 

  10. Abe, R. Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J. Photochem. Photobiol. C: Photochem. Rev. 11, 179–209 (2010).

    Article  CAS  Google Scholar 

  11. Maeda, K. & Domen, K. Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1, 2655–2661 (2010).

    Article  CAS  Google Scholar 

  12. Maeda, K. Photocatalytic water splitting using semiconductor particles: History and recent developments. J. Photochem. Photobiol. C 12, 237–268 (2011).

    Article  CAS  Google Scholar 

  13. Maeda, K. Z-scheme water splitting using two different semiconductor photocatalysts. ACS Catal. 3, 1486–1503 (2013).

    Article  CAS  Google Scholar 

  14. Li, X., Yu, J., Low, J., Fang, Y., Xiao, Jing & Chen, X. Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3, 2485–2534 (2015).

    Article  CAS  Google Scholar 

  15. Pinaud, B. A. et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 6, 1983–2002 (2013).

    Article  CAS  Google Scholar 

  16. Zhang, X., Chen, Y. L., Liu, R. & Tsai, D. P. Plasmonic photocatalysis. Rep. Prog. Phys. 76, 046401 (2013).

    Article  PubMed  CAS  Google Scholar 

  17. Yang, J., Wang, D., Han, H. & Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 46, 1900–1909 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Hisatomi, T., Kubota, J. & Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43, 7520–7535 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Zhou, P., Yu, J. & Jaroniec, M. All-solid-state z-scheme photocatalytic systems. Adv. Mater. 26, 4920–4935 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Fabian, D. M. et al. Particle suspension reactors and materials for solar-driven water splitting. Energy Environ. Sci. 8, 2825–2850 (2015).

    Article  CAS  Google Scholar 

  21. Hisatomi, T., Takanabe, K. & Domen, K. Photocatalytic water-splitting reaction from catalytic and kinetic perspectives. Catal. Lett. 145, 95–108 (2015).

    Article  CAS  Google Scholar 

  22. Hisatomi, T. & Domen, K. Introductory lecture: sunlight-driven water splitting and carbon dioxide reduction by heterogeneous semiconductor systems as key processes in artificial photosynthesis. Faraday Discuss. 198, 11–35 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Setoyama, T., Takewaki, T., Domen, K. & Tatsumi, T. The challenges of solar hydrogen in chemical industry: how to provide, and how to apply? Faraday Discuss. 198, 509–527 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, S., Takata, T. & Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2, 17050 (2017). The basis and historical evolution of photocatalytic water splitting are reviewed along with emerging materials and technologies for overall water splitting.

    Article  CAS  Google Scholar 

  25. Takanabe, K. Photocatalytic water splitting: quantitative approaches toward photocatalyst by design. ACS Catal. 7, 8006–8022 (2017). Physical and chemical processes in photocatalytic water splitting on particulate semiconductors are reviewed comprehensively.

    Article  CAS  Google Scholar 

  26. Osterloh, F. E. Photocatalysis versus photosynthesis: a sensitivity analysis of devices for solar energy conversion and chemical transformations. ACS Energy Lett. 2, 445–453 (2017).

    Article  CAS  Google Scholar 

  27. Wang, Y. et al. Mimicking natural photosynthesis: solar to renewable H2 fuel synthesis by z-scheme water splitting systems. Chem. Rev. 118, 5201–5241 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Qureshi, M. & Takanabe, K. Insights on measuring and reporting heterogeneous photocatalysis: efficiency definitions and setup examples. Chem. Mater. 29, 158–167 (2017). Guiding principles for the correct measurement and reporting of photocatalytic efficiency are critically reviewed.

    Article  CAS  Google Scholar 

  29. Kamat, P. V. Semiconductor photocatalysis: “Tell us the complete story!”. ACS Energy Lett. 3, 622–623 (2018).

    Article  CAS  Google Scholar 

  30. Lan, R., Irvine, J. T. S. & Tao, S. Ammonia and related chemicals as potential indirect hydrogen storage materials. Int. J. Hydrog. Energy 37, 1482–1494 (2012).

    CAS  Google Scholar 

  31. Kondratenko, E. V., Mul, G., Baltrusaitis, J., Larrazábalc, G. O. & Pérez-Ramírez, J. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci. 6, 3112–3135 (2013).

    Article  CAS  Google Scholar 

  32. Gretz, J., Drolet, B., Kluyskens, D., Sandmann, F. & Ullmann, O. Status of the hydro-hydrogen pilot project (EQHHPP). Int. J. Hydrog. Energy 19, 169–174 (1994).

    Article  Google Scholar 

  33. Okada, Y., Sasaki, E., Watanabe, E., Hyodo, S. & Nishijima, H. Development of dehydrogenation catalyst for hydrogen generation in organic chemical hydride method. Int. J. Hydrog. Energy 31, 1348–1356 (2006).

    Article  CAS  Google Scholar 

  34. Alhumaidan, F., Cresswell, D. & Garforth, A. Hydrogen storage in liquid organic hydride: producing hydrogen catalytically from methylcyclohexane. Energy Fuels 25, 4217–4234 (2011).

    Article  CAS  Google Scholar 

  35. Fujishima, A., Zhang, X. & Tryk, D. A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515–582 (2008).

    Article  CAS  Google Scholar 

  36. Chong, M. N., Jin, B., Chow, C. W. K. & Saint, C. Recent developments in photocatalytic water treatment technology: a review. Water Res. 44, 2997–3027 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Sayama, K. Significance of artificial photosynthesis and solar hydrogen technology: discussion using cost analysis. Optronics 34, 44–49 (2015).

    Google Scholar 

  38. Shaner, M. R., Atwater, H. A., Lewis, N. S. & McFarland, E. W. A comparative technoeconomic analysis of renewable hydrogen production using solar energy. Energy Environ. Sci. 9, 2354–2371 (2016).

    Article  CAS  Google Scholar 

  39. Ager, J. W., Shaner, M. R., Walczak, K. A., Sharp, I. D. & Ardo, S. Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting. Energy Environ. Sci. 8, 2811–2824 (2015).

    Article  CAS  Google Scholar 

  40. Nakamura, A. et al. A 24.4% solar to hydrogen energy conversion efficiency by combining concentrator photovoltaic modules and electrochemical cells. Appl. Phys. Express 8, 107101–107102 (2015).

    Article  CAS  Google Scholar 

  41. Jia, J. et al. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nat. Commun. 7, 13237–13241 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sathre, R. et al. Opportunities to improve the net energy performance of photoelectrochemical water-splitting technology. A. Energy Environ. Sci. 9, 803–819 (2016).

    Article  CAS  Google Scholar 

  43. Fu, R. et al. U.S. solar Photovoltaic System Cost Benchmark: Q1 2016 (NREL, 2016).

  44. Schmidt, O. et al. Future cost and performance of water electrolysis: an expert elicitation study. Int. J. Hydrog. Energy 42, 30470–30492 (2017).

    Article  CAS  Google Scholar 

  45. Yoshida, M. et al. Role and function of noble-metal/Cr-layer core/shell structure cocatalysts for photocatalytic overall water splitting studied by model electrodes. J. Phys. Chem. C 113, 10151–10157 (2009). The mechanism of how a ultrathin Cr 2 O 3 layer prevents backward reactions on noble metals and preserves their hydrogen evolution activity is revealed via electrochemical approaches.

    Article  CAS  Google Scholar 

  46. Takata, T., Pan, C., Nakabayashi, M., Shibata, N. & Domen, K. Fabrication of a Core−shell-type photocatalyst via photodeposition of group IV and V transition metal oxyhydroxides: an effective surface modification method for overall water splitting. J. Am. Chem. Soc. 137, 9627–9634 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Garcia-Esparza, A. T. et al. An oxygen-insensitive hydrogen evolution catalyst coated by molybdenum-based layer for overall water splitting. Angew. Chem. Int. Ed. 56, 5780–5784 (2017).

    Article  CAS  Google Scholar 

  48. Muduli, S. K. et al. Evolution of hydrogen by few-layered black phosphorus under visible illumination. J. Mater. Chem. A 5, 24874–24879 (2017).

    Article  CAS  Google Scholar 

  49. Tian, B. et al. Supported black phosphorus nanosheets as hydrogen-evolving photocatalyst achieving 5.4% energy conversion efficiency at 353 K. Nat. Commun. 9, 1397 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Zhu, M., Sun, Z., Fujitsuka, M. & Majima, T. Z-scheme photocatalytic water splitting on a 2D heterostructure of black phosphorus/bismuth vanadate using visible Light. Angew. Chem. Int. Ed. 57, 2160–2164 (2018).

    Article  CAS  Google Scholar 

  51. Wang, X. et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, G., Lan, Z.-A., Lin, L., Lin, S. & Wang, X. Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents. Chem. Sci. 7, 3062–3066 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lin, L. et al. Photocatalytic overall water splitting by conjugated semiconductors with crystalline poly(triazine imide) frameworks. Chem. Sci. 8, 5506–5511 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, G., Lan, Z.-A. & Wang, X. Surface engineering of graphitic carbon nitride polymers with cocatalysts for photocatalytic overall water splitting. Chem. Sci. 8, 5261–5274 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Che et al. Fast photoelectron transfer in (Cring)−C3N4 plane heterostructural nanosheets for overall water splitting. J. Am. Chem. Soc. 139, 3021–3026 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Wang, L. et al. Conjugated microporous polymer nanosheets for overall water splitting using visible light. Adv. Mater. 29, 1702428 (2017).

    Article  CAS  Google Scholar 

  57. Wang, L., Zheng, X., Chen, L., Xiong, Y. & Xu, H. Van der waals heterostructures comprised of ultrathin polymer nanosheets for efficient z-scheme overall water splitting. Angew. Chem. Int. Ed. 57, 3454–3458 (2018).

    Article  CAS  Google Scholar 

  58. Tanaka, A., Teramura, K., Hosokawa, S., Kominami, H. & Tanaka, T. Visible light-induced water splitting in an aqueous suspension of a plasmonic Au/TiO2 photocatalyst with metal co-catalysts. Chem. Sci. 8, 2574–2580 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, S. et al. Achieving overall water splitting on plasmon-based solid z-scheme photocatalysts free of redox mediators. J. Catal. 354, 250–257 (2017).

    Article  CAS  Google Scholar 

  60. Naya, S., Kume, T., Akashi, R., Fujishima, M. & Tada, H. Red-light-driven water splitting by Au(Core)−CdS(Shell) half-cut nanoegg with heteroepitaxial junction. J. Am. Chem. Soc. 140, 1251–1254 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Sato, S. & White, J. M. Photodecomposition of water over Pt/TiO2 catalysts. Chem. Phys. Lett. 72, 83–86 (1980).

    Article  CAS  Google Scholar 

  62. Domen, K., Naito, S., Soma, M., Onishi, T. & Tamaru, K. Photocatalytic decomposition of water vapour on an NiO–SrTiO3 catalyst. J. Chem. Soc. Chem. Commun. 12, 543–544 (1980).

    Article  Google Scholar 

  63. Lehn, J. M., Sauvage, J. P. & Ziessel, R. Photochemical water splitting. Continuous generation of hydrogen and oxygen by irradiation of aqueous suspensions of metal loaded strontium titanate. Nouv. J. Chim. 4, 623–627 (1980).

    CAS  Google Scholar 

  64. Kato, H., Asakura, K. & Kudo, A. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J. Am. Chem. Soc. 125, 3082–3089 (2003). A particulate semiconductor is shown to split water into hydrogen and oxygen with an AQY ofgreater than 50%.

    Article  CAS  PubMed  Google Scholar 

  65. An, L. & Onishi, H. Electron−hole recombination controlled by metal doping sites in NaTaO3 photocatalysts. ACS Catal. 5, 3196–3206 (2015).

    Article  CAS  Google Scholar 

  66. An, L. et al. Local environment of strontium cations activating NaTaO3 photocatalysts. ACS Catal. 8, 880–885 (2018).

    Article  CAS  Google Scholar 

  67. Yamakata, A., Ishibashi, T., Kato, H., Kudo, A. & Onishi, H. Photodynamics of NaTaO3 catalysts for efficient water splitting. J. Phys. Chem. B 107, 14383–14387 (2003).

    Article  CAS  Google Scholar 

  68. Maruyama, M., Iwase, A., Kato, H., Kudo, A. & Onishi, H. Time-resolved infrared absorption study of NaTaO3 photocatalysts doped with alkali earth metals. J. Phys. Chem. C 113, 13918–13923 (2009).

    Article  CAS  Google Scholar 

  69. Sakata, Y., Hayashi, T., Yasunaga, R., Yanaga, N. & Imamura, H. Remarkably high apparent quantum yield of the overall photocatalytic H2O splitting achieved by utilizing Zn ion added Ga2O3 prepared using dilute CaCl2 solution. Chem. Commun. 51, 12935–12938 (2015).

    Article  CAS  Google Scholar 

  70. Goto, Y. et al. A particulate photocatalyst water-splitting panel for large-scale solar hydrogen generation. Joule 2, 509–520 (2018). Photocatalytic water-splitting panel reactors that can sustain a gas evolution rate envisioned at 10% STH and are scalable beyond the square-metre scale are demonstrated.

    Article  CAS  Google Scholar 

  71. Ham, Y. et al. Flux-mediated doping of SrTiO3 photocatalysts for efficient overall water splitting. J. Mater. Chem. A 4, 3027–3033 (2016).

    Article  CAS  Google Scholar 

  72. Chiang, T. H. et al. Efficient photocatalytic water splitting Using Al-Doped SrTiO3 Coloaded with Molybdenum Oxide and Rhodium–Chromium Oxide. ACS Catal. 8, 2782–2788 (2018).

    Article  CAS  Google Scholar 

  73. Takata, T. & Domen, K. Defect engineering of photocatalysts by doping of aliovalent metal cations for efficient water splitting. J. Phys. Chem. C. 113, 19386–19388 (2009).

    Article  CAS  Google Scholar 

  74. Mu et al. Enhancing charge separation on high symmetry SrTiO3 exposed with anisotropic facets for photocatalytic water splitting. Energy Environ. Sci. 9, 2463–2469 (2016).

    Article  CAS  Google Scholar 

  75. Zhu, J. et al. Direct imaging of highly anisotropic photogenerated charge separations on different facets of a single BiVO4 photocatalyst. Angew. Chem. Int. Ed. 54, 9111–9114 (2015).

    Article  CAS  Google Scholar 

  76. Chen, R., Zhu, J., An, H., Fan, F. & Can, Li Unravelling charge separation via surface built-in electric fields within single particulate photocatalysts. Faraday Discuss. 198, 473–479 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Scaife, D. E. Oxide semiconductors in photoelectrochemical conversion of solar energy. Sol. Energy 25, 41–45 (1980).

    Article  CAS  Google Scholar 

  78. Jo, W. et al. Phase transition-induced band edge engineering of BiVO4 to split pure water under visible light. Proc. Natl Acad. Sci. USA 112, 13774–13778 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang, J., Zhang, M., Lin, S., Fu, X. & Wang, X. Molecular doping of carbon nitride photocatalysts with tunable bandgap and enhanced activity. J. Catal. 310, 24–30 (2014).

    Article  CAS  Google Scholar 

  80. Sayama, K., Mukasa, K., Abe, R., Abe, Y. & Arakawa, H. Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3 /I shuttle redox mediator under visible light irradiation. Chem. Commun. 23, 2416–2417 (2001).

    Article  CAS  Google Scholar 

  81. Miyoshi, A. et al. Nitrogen/fluorine-codoped rutile titania as a stable oxygen-evolution photocatalyst for solar-driven z-scheme water splitting. Sustain. Energ. Fuels 2, 2025–2035 (2018).

    Article  CAS  Google Scholar 

  82. Wang, Q. et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 15, 611–615 (2016). Particulate photocatalyst sheets that split water into hydrogen and oxygen by two-step excitation at high STH values and maintain the intrinsic high water-splitting activity regardless of the size are demonstrated.

    Article  CAS  PubMed  Google Scholar 

  83. Wang, Q. et al. Particulate photocatalyst sheets based on carbon conductor layer for efficient z-scheme pure-water splitting at ambient pressure. J. Am. Chem. Soc. 139, 1675–1683 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Wang, Q., Hisatomi, T., Ma, S. S. K., Li, Y. & Domen, K. Core/shell structured La- and Rh-codoped SrTiO3 as a hydrogen evolution photocatalyst in z-scheme overall water splitting under visible light irradiation. Chem. Mater. 26, 4144–4150 (2014).

    Article  CAS  Google Scholar 

  85. Asai, R., Nemono, H., Jia, Q., Saito, K., Iwase, A. & Kudo, A. A visible light responsive rhodium and antimony codoped SrTiO3 powdered photocatalyst loaded with an IrO2 cocatalyst for solar water splitting. Chem. Commun. 50, 2543–2546 (2014).

    Article  CAS  Google Scholar 

  86. Xing, Z., Zong, X., Pan, J. & Wang, Li On the engineering part of solar hydrogen production from water splitting: photoreactor design. Chem. Eng. Sci. 104, 125–146 (2013).

    Article  CAS  Google Scholar 

  87. Jing, D., Liu, H., Zhang, X., Zhao, L. & Guo, L. Photocatalytic hydrogen production under direct solar light in a CPC based solar reactor: reactor design and preliminary results. Energy Convers. Manag. 50, 2919–2926 (2009).

    Article  CAS  Google Scholar 

  88. Xiong, A. et al. Fabrication of photocatalyst panels and the factors determining their activity for water splitting. Catal. Sci. Technol. 4, 325–328 (2014).

    Article  CAS  Google Scholar 

  89. Wang, Q. et al. Z-scheme water splitting using particulate semiconductors immobilized onto metal layers for efficient electron relay. J. Catal. 328, 308–315 (2015).

    Article  CAS  Google Scholar 

  90. Schröder, M. et al. Hydrogen evolution reaction in a large-scale reactor using a carbon nitride photocatalyst under natural sunlight irradiation. Energy Technol. 3, 1014–1017 (2015).

    Article  CAS  Google Scholar 

  91. Hisatomi, T. & Domen, K. in Advances in Photoelectrochemical Water Splitting: Theory, Experiment and Systems Analysis (eds Tilley, S. D., Lany, S. & van de Krol, R.) Ch. 7 (Royal Society of Chemistry, 2018).

  92. Sun, S. et al. Efficient redox-mediator-free z-scheme water splitting employing oxysulfide photocatalysts under visisble light. ACS Catal. 8, 1690–1696 (2018).

    Article  CAS  Google Scholar 

  93. Wang, Q. et al. Printable photocatalyst sheets incorporating a transparent conductive mediator for z-scheme water splitting. Joule 2, 2667–2680 (2018). Efficient and scalable photocatalyst sheets for z-scheme water splitting are fabricated and operated in ambient-pressure processes.

    Article  CAS  Google Scholar 

  94. Hisatomi, T. et al. Particulate photocatalyst sheets based on non-oxide semiconductor materials for water splitting under visible light irradiation. Catal. Sci. Technol. 8, 3918–3925 (2018).

    Article  CAS  Google Scholar 

  95. Pan, C. et al. A complex perovskite-type oxynitride: the first photocatalyst for water splitting operable at up to 600 nm. Angew. Chem. Int. Ed. 54, 2955–2959 (2015). The applicability of narrow band gap oxynitrides to one-step excitation overall water splitting is demonstrated via surface modifications with oxide thin layers.

    Article  CAS  Google Scholar 

  96. Pan, C., Takata, T. & Domen, K. Overall water splitting on the transition-metal oxynitride photocatalyst LaMg1/3Ta2/3O2N over a large portion of the visible-light spectrum. Chem. Eur. J. 22, 1854–1862 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Iwashina, K., Iwase, A., Ng, Y., Amal, R. & Kudo, A. Z-schematic water splitting into H2 and O2 using metal sulfide as a hydrogen-evolving photocatalyst and reduced graphene oxide as a solid-state electron mediator. J. Am. Chem. Soc. 137, 604–607 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Ma, G. et al. Visible light-driven z-scheme water splitting using oxysulfide H2 evolution photocatalysts. J. Phys. Chem. Lett. 7, 3892–3896 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Kobayashi, R. et al. A heterojunction photocatalyst composed of zinc rhodium oxide, single crystal derived bismuth vanadium oxide, and silver for overall pure-water splitting under visible light up to 740 nm. Phys. Chem. Chem. Phys. 18, 27754–27760 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Hara, Y. et al. Silver-inserted heterojunction photocatalyst consisting of zinc rhodium oxide and silver antimony oxide for overall pure-water splitting under visible light. Appl. Catal. B. 209, 663–668 (2017).

    Article  CAS  Google Scholar 

  101. Ohno, T., Bai, L., Hisatomi, T., Maeda, K. & Domen, K. Photocatalytic water splitting using modified GaN:ZnO solid solution under visible light: long-time operation and regeneration of activity. J. Am. Chem. Soc. 134, 8254–8259 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Wang, Z. et al. Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles. Nat. Catal. 1, 756–763 (2018). Single crystal semiconductor nitride nanorods free from inside grain boundaries. and active in the overall water splitting reaction are fabricated by unique short nitridation.

    Article  CAS  Google Scholar 

  103. Zhang, F. Cobalt-modified porous single-crystalline LaTiO2N for highly efficient water oxidation under visible light. J. Am. Chem. Soc. 134, 8348–8351 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Kim, T. W. & Choi, K.-S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990–994 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Godin, R., Kafizas, A. & Durrant, J. R. Electron transfer dynamics in fuel producing photosystems. Curr. Opin. Electrochem. 2, 136–143 (2017).

    Article  CAS  Google Scholar 

  106. Mei, B., Han, K. & Mul, G. Driving surface redox reactions in heterogeneous photocatalysis: the active state of illuminated semiconductor-supported nanoparticles during overall water-splitting. ACS Catal. 8, 9154–9164 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sambur, J. B. et al. Sub-particle reaction and photocurrent mapping to optimize catalyst-modified photoanodes. Nature 530, 77–80 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Yabuta, M. et al. Particle size dependence of carrier dynamics and reactivity of photocatalyst BiVO4 probed with single-particle transient absorption microscopy. J. Phys. Chem. C 121, 22060–22066 (2017).

    Article  CAS  Google Scholar 

  109. Sakai, E. et al. Investigation of the enhanced photocathodic activity of La5Ti2CuS5O7 photocathodes in H2 evolution by synchrotron radiation nanospectroscopy. Nanoscale 8, 18893–18896 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Fuku, K. & Sayama, K. Efficient oxidative hydrogen peroxide production and accumulation in photoelectrochemical water splitting using a tungsten trioxide/bismuth vanadate photoanode. Chem. Commun. 52, 5406–5409 (2016).

    Article  CAS  Google Scholar 

  111. Fuku, K., Miyase, Y., Miseki, Y., Gunji, T. & Sayama, K. WO3/BiVO4 photoanode coated with mesoporous Al2O3 layer for oxidative production of hydrogen peroxide from water with high selectivity. RSC Adv. 7, 47619–47623 (2017).

    Article  CAS  Google Scholar 

  112. Miyase, Y. et al. Modification of BiVO4/WO3 composite photoelectrodes with Al2O3 via chemical vapor deposition for highly efficient oxidative H2O2 production from H2O. Sustain. Energ. Fuels 2, 1621–1629 (2018).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Artificial Photosynthesis Project of the New Energy and Industrial Technology Development Organization (NEDO), by a Grant-in-Aid for Scientific Research (A) (no. 16H02417), a Grant-in-Aid for Young Scientists (A) (no. 15H05494), and a Grand-in-Aid for Scientific Research on Innovative Areas (no. 18H05156) from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunari Domen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hisatomi, T., Domen, K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat Catal 2, 387–399 (2019). https://doi.org/10.1038/s41929-019-0242-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0242-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing