Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water

Matters Arising to this article was published on 25 May 2022

A Publisher Correction to this article was published on 08 March 2019

This article has been updated


The electrochemical nitrogen reduction reaction (ENRR) can allow the production of ammonia from nitrogen and water under ambient conditions and is regarded as a sustainable alternative to the industrial Haber–Bosch process. However, electrocatalytic systems that selectively and efficiently catalyse nitrogen reduction remain elusive due to the strong competition with the hydrogen evolution reaction. Here, we report a strategy to simultaneously promote ENRR selectivity and activity using bismuth nanocrystals and potassium cations. Bismuth exhibits higher intrinsic ENRR activity than transition metals due to the strong interaction between the Bi 6p band and the N 2p orbitals. Potassium cations stabilize key nitrogen-reduction intermediates and regulate proton transfer to increase the selectivity. A high Faradaic efficiency of 66% and ammonia yield of 200 mmol g–1 h–1 (0.052 mmol cm–2 h–1) are obtained in aqueous electrolyte under ambient conditions. This strategy represents a general method to expand the library of catalysts and promoters for the selective electrochemical reduction of stable molecules.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Promoting the ENRR with bismuth catalysts and potassium cations.
Fig. 2: Structure, morphology and composition characterizations for BiNCs.
Fig. 3: ENRR performance for BiNCs, BiNPs and BiBPs in nitrogen-saturated electrolytes (0.5 mol l–1 of K2SO4, pH 3.5).
Fig. 4: Promotion of ENRR on BiNCs by potassium cations (−0.60 V versus RHE, pH 3.5).
Fig. 5: Thermodynamics for ENRR on solvated Bi surfaces under conditions with and without K+.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Change history

  • 08 March 2019

    In the version of this Article originally published, all labels for the orange, blue and red trends in Fig. 3b read ‘BiNCs’, but the orange labels should have read ‘BiNPs’, and the blue ‘BiBPs’. This has now been corrected.


  1. van der Ham, C. J. M., Koper, M. T. M. & Hetterscheid, D. G. H. Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev. 43, 5183–5191 (2014).

    Article  CAS  Google Scholar 

  2. Kyriakou, V., Garagounis, I., Vasileiou, E., Vourros, A. & Stoukides, M. Progress in the electrochemical synthesis of ammonia. Catal. Today 286, 2–13 (2017).

    Article  CAS  Google Scholar 

  3. Shipman, M. A. & Symes, M. Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catal. Today 286, 57–68 (2017).

    Article  CAS  Google Scholar 

  4. Guo, C. X., Ran, J. R., Vasileff, A. & Qiao, S. Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 11, 45–56 (2018).

    Article  CAS  Google Scholar 

  5. Cao, N. & Zheng, G. F. Aqueous electrocatalytic N2 reduction under ambient conditions. Nano Res. 11, 2992–3008 (2018).

    Article  CAS  Google Scholar 

  6. Deng, J., Iñiguez, J. A. & Liu, C. Electrocatalytic nitrogen reduction at low temperature. Joule 2, 846–856 (2018).

    Article  CAS  Google Scholar 

  7. Chen, J. G. et al. Beyond fossil fuel-driven nitrogen transformations. Science 360, eaar6611 (2018).

    Article  Google Scholar 

  8. Ertl, G. Reactions at surfaces: From atoms to complexity. Angew. Chem. Int. Ed. 47, 3524–3535 (2008).

    Article  CAS  Google Scholar 

  9. Appl, M. in Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH, Weinheim, 2006).

  10. Skúlason, E. et al. A theoretical evaluation of possible transition metal electro catalysts for N2 reduction. Phys. Chem. Chem. Phys. 14, 1235–1245 (2012).

    Article  Google Scholar 

  11. Montoya, J. H., Tsai, C., Vojvodic, A. & Nørskov, J. K. The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations. ChemSusChem 8, 2180–2186 (2015).

    Article  CAS  Google Scholar 

  12. Kordali, V., Kyriacou, G. & Lambrou, Ch. Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Chem. Commun. 1673–1674 (2000).

  13. Lan, R., Irvine, J. T. S. & Tao, S. W. Synthesis of ammonia directly from air and water at ambient temperature and pressure. Sci. Rep. 3, 1145 (2013).

    Article  Google Scholar 

  14. Chen, S. M. et al. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst. Angew. Chem. Int. Ed. 56, 2699–2703 (2017).

    Article  CAS  Google Scholar 

  15. Chen, G. F. et al. Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy. J. Am. Chem. Soc. 139, 9771–9774 (2017).

    Article  CAS  Google Scholar 

  16. Bao, D. et al. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv. Mater. 29, 604799 (2017).

    Google Scholar 

  17. Li, S. J. et al. Amorphizing of Au nanoparticles by CeOx–RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Adv. Mater. 29, 1700001 (2017).

    Article  Google Scholar 

  18. Shi, M. M. et al. Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv. Mater. 29, 1606550 (2017).

    Article  Google Scholar 

  19. Lv, C. D. et al. An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angew. Chem. Int. Ed. 57, 6073–6076 (2018).

    Article  CAS  Google Scholar 

  20. Yao, Y., Zhu, S. Q., Wang, H. J., Li, H. & Shao, M. H. A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces. J. Am. Chem. Soc. 140, 1496–1501 (2018).

    Article  CAS  Google Scholar 

  21. Wang, J. et al. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat. Commun. 9, 1795 (2018).

    Article  Google Scholar 

  22. Kim, K., Yoo, C. Y., Kim, J. N., Yoon, H. C. & Han, J. I. Electrochemical synthesis of ammonia from water and nitrogen in ethylenediamine under ambient temperature and pressure. J. Electrochem. Soc. 163, F1523–F1526 (2016).

    Article  CAS  Google Scholar 

  23. Zhou, F. L. et al. Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. Energy Environ. Sci. 10, 2516–2520 (2017).

    Article  CAS  Google Scholar 

  24. Lee, H. K. et al. Favoring the unfavored: selective electrochemical nitrogen fixation using a reticular chemistry approach. Sci. Adv. 4, eaar3208 (2018).

    Article  Google Scholar 

  25. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications 2nd edn (Wiley, New York, NY, 2001).

  26. Mukouyama, Y., Nakazato, R., Shiono, T., Nakanishi, S. J. & Okamoto, H. Potential oscillation during electrolysis of water in acidic solutions under numerous conditions. J. Electroanal. Chem. 713, 39–46 (2014).

    Article  CAS  Google Scholar 

  27. Singh, A. R. et al. Electrochemical ammonia synthesis—the selectivity challenge. ACS Catal. 7, 706–709 (2017).

    Article  CAS  Google Scholar 

  28. Li, H., Shang, J., Ai, Z. H. & Zhang, L. Z. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets. J. Am. Chem. Soc. 137, 6393–6399 (2015).

    Article  CAS  Google Scholar 

  29. Mills, J. N., McCrum, I. T. & Janik, M. J. Alkali cation specific adsorption onto fcc(111) transition metal electrodes. Phys. Chem. Chem. Phys. 16, 13699–13707 (2014).

    Article  CAS  Google Scholar 

  30. McCrum, I. T. & Janik, M. J. pH and alkali cation effects on the Pt cyclic voltammogram explained using density functional theory. J. Phys. Chem. C 120, 457–471 (2016).

    Article  CAS  Google Scholar 

  31. Dronskowski, R. & Blochl, P. E. Crystal orbital Hamilton populations (COHP). Energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 97, 8617–8624 (1993).

    Article  CAS  Google Scholar 

  32. Deringer, V. L., Tchougreeff, A. L. & Dronskowski, R. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A 115, 5461–5466 (2011).

    Article  CAS  Google Scholar 

  33. Maintz, S., Deringer, V. L., Tchougreeff, A. L. & Dronskowski, R. Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids. J. Comput. Chem. 34, 2557–2567 (2013).

    Article  CAS  Google Scholar 

  34. Maintz, S., Deringer, V. L., Tchougreeff, A. L. & Dronskowski, R. LOBSTER: a tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 37, 1030–1035 (2016).

    Article  CAS  Google Scholar 

  35. Maintza, S., Essera, M. & Dronskowski, R. Efficient rotation of local basis functions using real spherical harmonics. Acta Phys. Pol. B 47, 1165–1175 (2016).

    Article  Google Scholar 

  36. Trasatti, S. Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. J. Electroanal. Chem. 39, 163–184 (1972).

    Article  CAS  Google Scholar 

  37. Markovi, N. M. & Ross, P. N. Jr Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 45, 117–229 (2002).

    Article  Google Scholar 

  38. Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I. & Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5, 909–913 (2006).

    Article  CAS  Google Scholar 

  39. Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).

    Article  Google Scholar 

  40. Liu, M. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016).

    Article  CAS  Google Scholar 

  41. Ledezma-Yanes, I. et al. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2, 17031 (2017).

    Article  Google Scholar 

  42. Chen, X., McCrum, I. T., Schwarz, K. A., Janik, M. J. & Koper, M. T. M. Co-adsorption of cations as the cause of the apparent pH dependence of hydrogen adsorption on a stepped platinum single-crystal electrode. Angew. Chem. Int. Ed. 56, 15025–15029 (2017).

    Article  CAS  Google Scholar 

  43. Watt, G. W. & Chrisp, J. D. Spectrophotometric method for determination of hydrazine. Anal. Chem. 24, 2006–2008 (1952).

    Article  CAS  Google Scholar 

  44. Hafner, J. Ab-initio simulations of materials using VASP: density-functional theory and beyond. J. Comput. Chem. 29, 2044–2078 (2008).

    Article  CAS  Google Scholar 

  45. Hammer, B., Hansen, L. & Nørskov, J. Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999).

    Article  Google Scholar 

  46. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  47. Barrett, C. S. The structure of bismuth at low temperatures. Aust. J. Phys. 13, 209–222 (1960).

    Article  CAS  Google Scholar 

  48. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  49. Bader, R. F. W. A quantum theory of molecular structure and its applications. Chem. Rev. 91, 893–928 (1991).

    Article  CAS  Google Scholar 

  50. Back, S. & Jung, Y. On the mechanism of electrochemical ammonia synthesis on the Ru catalyst. Phys. Chem. Chem. Phys. 18, 9161–9166 (2016).

    Article  CAS  Google Scholar 

  51. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

Download references


The authors thank W. Sun, G. Wang and Z. Zhou for helpful discussions. The authors acknowledge the Analytical and Testing Center of BIT for technical support and the High-Performance Computing Platform of PKU for supporting the computational work. A.X.Y. acknowledges financial support from the National Natural Science Foundation of China (grant no. 21601015) and the Beijing Institute of Technology Research Fund Program for Young Scholars. Y.W.Z. acknowledges financial support from the National Key Research and Development Program of China (no. 2016YFB0701100), the National Natural Science Foundation of China (nos. 21832001, 21771009, 21573005 and 21621061) and the Beijing Natural Science Foundation (no. 2162019). C.H.Y. acknowledges financial support from the National Natural Science Foundation of China (nos. 21331001, 21590791 and 21461162001) and the National Key Research and Development Program of China (nos. 2014CB643800 and 2017YFA0205101).

Author information

Authors and Affiliations



A.-X.Y., Y.-W.Z. and C.-H.Y. designed the research. Y.-C.H. synthesized the catalysts, conducted the structure analysis and electrocatalytic studies. Y.G., X.-Y.W., Y.-W.Z. and C.-H.Y. performed the DFT calculations. Y.-C.H., L.-W.C., M.S. and R.S. performed the in situ XANES analysis. L.-W.C., Y.G., T.-A.B., W.-Y.G., N.Z., X.S., X.F., J.-W.Z., B.W. and C.-W.H. assisted with material characterizations and catalysis measurements. A.-X.Y., Y.-C.H. and Y.G. co-wrote the paper. A.-X.Y., Y.-W.Z. and C.-H.Y. supervised the research. All authors discussed the results and assisted during manuscript preparation.

Corresponding authors

Correspondence to An-Xiang Yin, Rui Si, Ya-Wen Zhang or Chun-Hua Yan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–33, Supplementary Tables 1–4 and Supplementary References.

Supplementary Data

The optimized atomic coordinates of the adsorption configurations for *NNH on Bi(012), (104) and (110)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hao, YC., Guo, Y., Chen, LW. et al. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat Catal 2, 448–456 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing