Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products

Article metrics

Abstract

The CO2 electroreduction reaction (CO2RR) to fuels and feedstocks is an attractive route to close the anthropogenic carbon cycle and store renewable energy. The generation of more reduced chemicals, especially multicarbon oxygenate and hydrocarbon products (C2+) with higher energy densities, is highly desirable for industrial applications. However, selective conversion of CO2 to C2+ suffers from a high overpotential, a low reaction rate and low selectivity, and the process is extremely sensitive to the catalyst structure and electrolyte. Here we discuss strategies to achieve high C2+ selectivity through rational design of the catalyst and electrolyte. Current state-of-the-art catalysts, including Cu and Cu–bimetallic catalysts, as well as some alternative materials, are considered. The importance of taking into consideration the dynamic evolution of the catalyst structure and composition are highlighted, focusing on findings extracted from in situ and operando characterizations. Additional theoretical insight into the reaction mechanisms underlying the improved C2+ selectivity of specific catalyst geometries and compositions in synergy with a well-chosen electrolyte are also provided.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: NP size and loading effects.
Fig. 2: Real time characterization of Cu-based catalysts.
Fig. 3: Various parameters affecting the CO2RR selectivity of Cu-based bimetallic catalysts.
Fig. 4: Non-Cu catalysts for the production of hydrocarbons and oxygenates.
Fig. 5: Electrolyte effect on catalyst structure.
Fig. 6: Electrolyte effect on CO2RR reactivity.

References

  1. 1.

    Montoya, J. H. et al. Materials for solar fuels and chemicals. Nat. Mater. 16, 70–81 (2017).

  2. 2.

    Haas, T., Krause, R., Weber, R., Demler, M. & Schmid, G. Technical photosynthesis involving CO2 electrolysis and fermentation. Nat. Catal. 1, 32–39 (2018).

  3. 3.

    Nielsen, D. U., Hu, X.-M., Daasbjerg, K. & Skrydstrup, T. Chemically and electrochemically catalysed conversion of CO2 to CO with follow-up utilization to value-added chemicals. Nat. Catal. 1, 244–254 (2018).

  4. 4.

    Whipple, D. T. & Kenis, P. J. A. Prospects of CO2 utilization via direct heterogeneous electrochemical reduction. J. Phys. Chem. Lett. 1, 3451–3458 (2010).

  5. 5.

    Gao, D., Cai, F., Wang, G. & Bao, X. Nanostructured heterogeneous catalysts for electrochemical reduction of CO2. Curr. Opin. Green Sustain. Chem. 3, 39–44 (2017).

  6. 6.

    Kortlever, R., Shen, J., Schouten, K. J. P., Calle-Vallejo, F. & Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015).

  7. 7.

    Lum, Y. & Ager, J. W. Evidence for product specific sites on oxide-derived Cu catalysts for electrochemical CO2 reduction. Nat. Catal. 2, 86–93 (2019).

  8. 8.

    Montoya, J. H., Shi, C., Chan, K. & Nørskov, J. K. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 6, 2032–2037 (2015).

  9. 9.

    Schouten, K. J. P., Qin, Z., Gallent, E. P. & Koper, M. T. M. Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J. Am. Chem. Soc. 134, 9864–9867 (2012).

  10. 10.

    Perez-Gallent, E., Figueiredo, M. C., Calle-Vallejo, F. & Koper, M. T. M. Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu(100) electrodes. Angew. Chem. Int. Ed. 56, 3621–3624 (2017). The first spectroscopic observation of a hydrogenated CO dimer Intermediate (*OCCOH) on Cu(100) during CO reduction using operando IR spectroscopy.

  11. 11.

    Clark, E. L. & Bell, A. T. Direct observation of the local reaction environment during the electrochemical reduction of CO2. J. Am. Chem. Soc. 140, 7012–7020 (2018).

  12. 12.

    Bertheussen, E. et al. Acetaldehyde as an intermediate in the electroreduction of carbon monoxide to ethanol on oxide-derived copper. Angew. Chem. Int. Ed. 55, 1450–1454 (2016).

  13. 13.

    Arán-Ais, R. M., Gao, D. & Roldan Cuenya, B. Structure- and electrolyte-sensitivity in CO2 electroreduction. Acc. Chem. Res. 51, 2906–2917 (2018).

  14. 14.

    Larrazábal, G. O., Martín, A. J. & Pérez-Ramírez, J. Building blocks for high performance in electrocatalytic CO2 reduction: materials, optimization strategies, and device engineering. J. Phys. Chem. Lett. 8, 3933–3944 (2017).

  15. 15.

    Zhu, D. D., Liu, J. L. & Qiao, S. Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 28, 3423–3452 (2016).

  16. 16.

    Handoko, A. D., Wei, F., Jenndy, Yeo, B. S. & Seh, Z. W. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat. Catal. 1, 922–934 (2018).

  17. 17.

    Choi, Y. W., Mistry, H. & Roldan Cuenya, B. New insights into working nanostructured electrocatalysts through operando spectroscopy and microscopy. Curr. Opin. Electrochem. 1, 95–103 (2017).

  18. 18.

    Weekes, D. M., Salvatore, D. A., Reyes, A., Huang, A. & Berlinguette, C. P. Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 51, 910–918 (2018).

  19. 19.

    Dinh, C. T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018). Ethylene was selectively produced with 70% FE at −0.55 V versus RHE in a flow cell with GDE configuration and highly alkaline electrolyte.

  20. 20.

    Reske, R., Mistry, H., Behafarid, F., Roldan Cuenya, B. & Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 136, 6978–6986 (2014).

  21. 21.

    Mistry, H. et al. Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. J. Am. Chem. Soc. 136, 16473–16476 (2014).

  22. 22.

    Mistry, H., Reske, R., Strasser, P. & Roldan Cuenya, B. Size-dependent reactivity of gold-copper bimetallic nanoparticles during CO2 electroreduction. Catal. Today 288, 30–36 (2017).

  23. 23.

    Jeon, H. S. et al. Operando evolution of the structure and oxidation state of size-controlled Zn nanoparticles during CO2 electroreduction. J. Am. Chem. Soc. 140, 9383–9386 (2018).

  24. 24.

    Merino-Garcia, I., Albo, J. & Irabien, A. Tailoring gas-phase CO2 electroreduction selectivity to hydrocarbons at Cu nanoparticles. Nanotechnology 29, 014001 (2018).

  25. 25.

    Ampelli, C. et al. Electrocatalytic conversion of CO2 to produce solar fuels in electrolyte or electrolyte-less configurations of PEC cells. Faraday Discuss. 183, 125–145 (2015).

  26. 26.

    Roth, C. et al. Determination of O[H] and CO coverage and adsorption sites on PtRu electrodes in an operating PEM fuel cell. J. Am. Chem. Soc. 127, 14607–14615 (2005).

  27. 27.

    Velasco-Vélez, J.-J. et al. The role of the copper oxidation state in the electrocatalytic reduction of CO2 into valuable hydrocarbons. ACS Sustain. Chem. Eng. 7, 1485–1492 (2019).

  28. 28.

    Saveleva, V. A. et al. Operando evidence for a universal oxygen evolution mechanism on thermal and electrochemical iridium oxides. J. Phys. Chem. Lett. 9, 3154–3160 (2018).

  29. 29.

    Wiltshire, R. J. K. et al. A PEM fuel cell for in situ XAS studies. Electrochim. Acta 50, 5208–5217 (2005).

  30. 30.

    Mistry, H. et al. Tuning catalytic selectivity at the mesoscale via interparticle interactions. ACS Catal. 6, 1075–1080 (2016).

  31. 31.

    Kim, D., Kley, C. S., Li, Y. & Yang, P. Copper nanoparticle ensembles for selective electroreduction of CO2 to C2–C3 products. Proc. Natl Acad. Sci. USA 114, 10560–10565 (2017).

  32. 32.

    Wang, X., Varela, A. S., Bergmann, A., Kühl, S. & Strasser, P. Catalyst particle density controls hydrocarbon product selectivity in CO2 electroreduction on CuOx. ChemSusChem 10, 4642–4649 (2017).

  33. 33.

    Hori, Y., Takahashi, I., Koga, O. & Hoshi, N. Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J. Phys. Chem. B 106, 15–17 (2002).

  34. 34.

    Huang, Y., Handoko, A. D., Hirunsit, P. & Yeo, B. S. Electrochemical reduction of CO2 using copper single-crystal surfaces: effects of CO* coverage on the selective formation of ethylene. ACS Catal. 7, 1749–1756 (2017).

  35. 35.

    Durand, W. J., Peterson, A. A., Studt, F., Abild-Pedersen, F. & Nørskov, J. K. Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces. Surf. Sci. 605, 1354–1359 (2011).

  36. 36.

    Hahn, C. et al. Engineering Cu surfaces for the electrocatalytic conversion of CO2: controlling selectivity toward oxygenates and hydrocarbons. Proc. Natl Acad. Sci. USA 114, 5918–5923 (2017).

  37. 37.

    Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Nørskov, J. K. How copper catalyzes the electroreduction of CO2 into hydrocarbon fuels. Energy Environ. Sci. 3, 1311 (2010).

  38. 38.

    Calle-Vallejo, F. & Koper, M. T. M. Theoretical considerations on the electroreduction of CO to C2 Species on Cu(100) electrodes. Angew. Chem. Int. Ed. 52, 7282–7285 (2013).

  39. 39.

    Kim, Y. G., Javier, A., Baricuatro, J. H. & Soriaga, M. P. Regulating the product distribution of CO reduction by the atomic-level structural modification of the Cu electrode surface. Electrocatalysis 7, 391–399 (2016).

  40. 40.

    Schouten, K. J. P., Pérez Gallent, E. & Koper, M. T. M. Structure sensitivity of the electrochemical reduction of carbon monoxide on copper single crystals. ACS Catal. 3, 1292–1295 (2013).

  41. 41.

    Chen, C. S. et al. Stable and selective electrochemical reduction of carbon dioxide to ethylene on copper mesocrystals. Catal. Sci. Technol. 5, 161–168 (2015).

  42. 42.

    Roberts, F. S., Kuhl, K. P. & Nilsson, A. High selectivity for ethylene from CO2 reduction over copper nanocube electrocatalysts. Angew. Chem. Int. Ed. 54, 5179–5182 (2015).

  43. 43.

    Loiudice, A. et al. Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew. Chem. Int. Ed. 55, 5789–5792 (2016).

  44. 44.

    Gao, D. et al. Plasma-activated copper nanocube catalysts for efficient carbon dioxide electroreduction to hydrocarbons and alcohols. ACS Nano 11, 4825–4831 (2017).

  45. 45.

    Grosse, P.et al. Dynamic changes in the structure, chemical state and catalytic selectivity of Cu nanocubes during CO2 electroreduction: size and support effects. Angew. Chem. Int. Ed. 6192–6197 (2018).Dynamic changes of morphological and chemical states of Cu nanocubes during CO 2 RR were monitored using operando EC-AFM and EXAFS and correlated to the activity and selectivity.

  46. 46.

    Dutta, A., Rahaman, M., Luedi, N. C., Mohos, M. & Broekmann, P. Morphology matters: Tuning the product distribution of CO2 electroreduction on oxide-derived Cu foam catalysts. ACS Catal. 6, 3804–3814 (2016).

  47. 47.

    Dutta, A., Rahaman, M., Mohos, M., Zanetti, A. & Broekmann, P. Electrochemical CO2 conversion using skeleton (sponge) type of Cu catalysts. ACS Catal. 7, 5431–5437 (2017).

  48. 48.

    Reller, C. et al. Selective electroreduction of CO2 toward ethylene on nano dendritic copper catalysts at high current density. Adv. Energy Mater. 7, 1602114 (2017).

  49. 49.

    Klingan, K. et al. Reactivity determinants in electrodeposited Cu foams for electrochemical CO2 reduction. ChemSusChem 11, 3449–3459 (2018).

  50. 50.

    Jeon, H. S., Kunze, S., Scholten, F. & Roldan Cuenya, B. Prism-shaped Cu nanocatalysts for electrochemical CO2 reduction to ethylene. ACS Catal. 8, 531–535 (2018).

  51. 51.

    Mariano, R. G., McKelvey, K., White, H. S. & Kanan, M. W. Selective increase in CO2 electroreduction activity at grain-boundary surface terminations. Science 358, 1187–1192 (2017).

  52. 52.

    Tang, W. et al. The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Phys. Chem. Chem. Phys. 14, 76–81 (2012).

  53. 53.

    Gupta, N., Gattrell, M. & MacDougall, B. Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions. J. Appl. Electrochem. 36, 161–172 (2006).

  54. 54.

    Pander, J. E. et al. Understanding the heterogeneous electrocatalytic reduction of CO2 on oxide-derived catalysts. ChemElectroChem 5, 219–237 (2018).

  55. 55.

    Mandal, L. et al. Investigating the role of copper oxide in electrochemical CO2 reduction in real time. ACS Appl. Mater. Interfaces 10, 8574–8584 (2018).

  56. 56.

    Lum, Y. & Ager, J. W. Stability of residual oxides in oxide-derived copper catalysts for electrochemical CO2 reduction investigated with 18O labeling. Angew. Chem. Int. Ed. 57, 551–554 (2018).

  57. 57.

    Mistry, H. et al. Highly selective plasma-activated copper catalysts for CO2 reduction to ethylene. Nat. Commun. 7, 12123 (2016).

  58. 58.

    Favaro, M. et al. Subsurface oxide plays a critical role in CO2 activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2. Proc. Natl Acad. Sci. USA 114, 6706–6711 (2017).

  59. 59.

    Xiao, H., Goddard, W., Cheng, T. & Liu, Y. Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2. Proc. Natl Acad. Sci. USA 114, 6685–6688 (2017). The interface between Cu + and Cu 0 species significantly improves the kinetics and thermodynamics of both CO 2 activation, and CO dimerization.

  60. 60.

    Zhou, Y. et al. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 10, 947–980 (2018).

  61. 61.

    Gao, D., Scholten, F. & Roldan Cuenya, B. Improved CO2 electroreduction performance on plasma-activated Cu catalysts via electrolyte design: Halide effect. ACS Catal. 7, 5112–5120 (2017).

  62. 62.

    Gao, D. et al. Activity and selectivity control in CO2 electroreduction to multicarbon products over CuOx catalysts via electrolyte design. ACS Catal. 8, 10012–10020 (2018). By combining experiment and DFT calculations, a synergistic effect of the electrolyte (larger cations, halides) and the presence of subsurface oxygen species was found to stabilize Cu + species during CO 2 RR and improve the C 2+ production and stability of CuO x catalysts.

  63. 63.

    Wang, L. et al. Electrochemical carbon monoxide reduction on polycrystalline copper: Effects of potential, pressure, and pH on selectivity toward multicarbon and oxygenated products. ACS Catal. 8, 7445–7454 (2018).

  64. 64.

    Clark, E. L. et al. Standards and protocols for data acquisition and reporting for studies of the electrochemical reduction of carbon dioxide. ACS Catal. 8, 6560–6570 (2018).

  65. 65.

    Schlögl, R. Heterogeneous catalysis. Angew. Chem. Int. Ed. 54, 3465–3520 (2015).

  66. 66.

    Garza, A. J., Bell, A. T. & Head-Gordon, M. Is subsurface oxygen necessary for the electrochemical reduction of CO2 on copper? J. Phys. Chem. Lett. 9, 601–606 (2018).

  67. 67.

    Yin, Z. et al. Highly selective palladium-copper bimetallic electrocatalysts for the electrochemical reduction of CO2 to CO. Nano Energy 27, 35–43 (2016).

  68. 68.

    Ma, S. et al. Electroreduction of CO2 to hydrocarbons using bimetallic Cu–Pd catalysts with different mixing patterns. J. Am. Chem. Soc. 139, 47–50 (2017). Phase-separated Cu–Pd bimetallic NPs achieved higher selectivity (>60%) for C 2 chemicals than ordered and disordered ones. Geometric effects rather than electronic effects seem to be key in determining the selectivity of bimetallic Cu–Pd catalysts.

  69. 69.

    Chen, D. et al. Tailoring the selectivity of bimetallic copper-palladium nanoalloys for electrocatalytic reduction of CO2 to CO. ACS Appl. Energy Mater. 1, 883–890 (2018).

  70. 70.

    Li, M. et al. Mesoporous palladium-copper bimetallic electrodes for selective electrocatalytic reduction of aqueous CO2 to CO. J. Mater. Chem. A 4, 4776–4782 (2016).

  71. 71.

    Mavrikakis, M., Hammer, B. & Nørskov, J. K. Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 81, 2819–2822 (1998).

  72. 72.

    Bligaard, T. & Nørskov, J. K. Ligand effects in heterogeneous catalysis and electrochemistry. Electrochim. Acta 52, 5512–5516 (2007).

  73. 73.

    Reske, R. et al. Controlling catalytic selectivities during CO2 electroreduction on thin Cu metal overlayers. J. Phys. Chem. Lett. 4, 2410–2413 (2013).

  74. 74.

    Bernal, M. et al. CO2 electroreduction on copper-cobalt nanoparticles: Size and composition effect. Nano Energy 53, 27–36 (2018).

  75. 75.

    Kim, D., Resasco, J., Yu, Y., Asiri, A. M. & Yang, P. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 5, 4948 (2014).

  76. 76.

    Kim, D. et al. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J. Am. Chem. Soc. 139, 8329–8336 (2017).

  77. 77.

    Ren, D., Ang, B. S. H. & Yeo, B. S. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catal. 6, 8239–8247 (2016). The CO spillover effect was observed and applied to facilitate selective CO2 RR to ethanol on oxide-derived Cu x Zn catalysts.

  78. 78.

    Lee, S., Park, G. & Lee, J. Importance of Ag–Cu biphasic boundaries for selective electrochemical reduction of CO2 to ethanol. ACS Catal. 7, 8594–8604 (2017).

  79. 79.

    Clark, E. L., Hahn, C., Jaramillo, T. F. & Bell, A. T. Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity. J. Am. Chem. Soc. 139, 15848–15857 (2017).

  80. 80.

    He, J., Johnson, N. J. J., Huang, A. & Berlinguette, C. P. Electrocatalytic alloys for CO2 reduction. ChemSusChem 11, 48–57 (2018).

  81. 81.

    Lum, Y. & Ager, J. W. Sequential catalysis controls selectivity in electrochemical CO2 reduction on Cu. Energy Environ. Sci. 11, 2935–2944 (2018).

  82. 82.

    Morales-Guio, C. G. et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 1, 764–771 (2018).

  83. 83.

    Jovanov, Z. P. et al. Opportunities and challenges in the electrocatalysis of CO2 and CO reduction using bifunctional surfaces: a theoretical and experimental study of Au–Cd alloys. J. Catal. 343, 215–231 (2016).

  84. 84.

    Kortlever, R. et al. Palladium–gold catalyst for the electrochemical reduction of CO2 to C1–C5 hydrocarbons. Chem. Commun. 52, 10229–10232 (2016).

  85. 85.

    Torelli, D. A. et al. Nickel–gallium-catalyzed electrochemical reduction of CO2 to highly reduced products at low overpotentials. ACS Catal. 6, 2100–2104 (2016).

  86. 86.

    Paris, A. R. & Bocarsly, A. B. Ni–Al films on glassy carbon electrodes generate an array of oxygenated organics from CO2. ACS Catal. 7, 6815–6820 (2017).

  87. 87.

    Verdaguer-Casadevall, A. et al. Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J. Am. Chem. Soc. 137, 9808–9811 (2015).

  88. 88.

    Dutta, A., Morstein, C. E., Rahaman, M., Cedeño López, A. & Broekmann, P. Beyond copper in CO2 electrolysis: effective hydrocarbon production on silver nano-foam catalysts. ACS Catal. 8, 8357–8368 (2018). By creating high density of defects and lower-coordinated sites, one could transform a CO-producing catalyst (with weak CO binding) into a hydrocarbon- and alcohol-producing catalyst.

  89. 89.

    Mistry, H. et al. Enhanced CO2 electroreduction to CO over defect-rich plasma-activated silver catalysts. Angew. Chem. Int. Ed. 56, 11394–11398 (2017).

  90. 90.

    Michalsky, R., Zhang, Y. J., Medford, A. J. & Peterson, A. A. Departures from the adsorption energy scaling relations for metal carbide catalysts. J. Phys. Chem. C 118, 13026–13034 (2014).

  91. 91.

    Kim, S. K., Zhang, Y. J., Bergstrom, H., Michalsky, R. & Peterson, A. Understanding the low-overpotential production of CH4 from CO2 on Mo2C catalysts. ACS Catal. 6, 2003–2013 (2016).

  92. 92.

    Chan, K., Tsai, C., Hansen, H. A. & Nørskov, J. K. Molybdenum sulfides and selenides as possible electrocatalysts for CO2 reduction. ChemCatChem 6, 1899–1905 (2014).

  93. 93.

    Francis, S. A. et al. Reduction of aqueous CO2 to 1-propanol at MoS2 electrodes. Chem. Mater. 30, 4902–4908 (2018).

  94. 94.

    Calvinho, K. U. D. et al. Selective CO2 reduction to C3 and C4 oxyhydrocarbons on nickel phosphides at overpotentials as low as 10 mV. Energy Environ. Sci. 11, 2550–2559 (2018).

  95. 95.

    Back, S. & Jung, Y. TiC- and TiN-supported single-atom catalysts for dramatic improvements in CO2 electrochemical reduction to CH4. ACS Energy Lett. 2, 969–975 (2017).

  96. 96.

    Cheng, M. J., Clark, E. L., Pham, H. H., Bell, A. T. & Head-Gordon, M. Quantum mechanical screening of single-atom bimetallic alloys for the selective reduction of CO2 to C1 hydrocarbons. ACS Catal. 6, 7769–7777 (2016).

  97. 97.

    Back, S., Lim, J., Kim, N. Y., Kim, Y. H. & Jung, Y. Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements. Chem. Sci. 8, 1090–1096 (2017).

  98. 98.

    Ju, W. et al. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 8, 944 (2017).

  99. 99.

    Bagger, A., Ju, W., Varela, A. S., Strasser, P. & Rossmeisl, J. Single site porphyrine-like structures advantages over metals for selective electrochemical CO2 reduction. Catal. Today 288, 74–78 (2017).

  100. 100.

    Genovese, C. et al. Operando spectroscopy study of the carbon dioxide electro-reduction by iron species on nitrogen-doped carbon. Nat. Commun. 9, 935 (2018).

  101. 101.

    Wu, J. et al. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nat. Commun. 7, 13869 (2016). The N-doped graphene quantum dots showed a high total CO 2 RR FE of up to 90%, with the C 2 and C 3 product distribution and production rate comparable to those obtained with copper nanoparticle-based electrocatalysts.

  102. 102.

    Liu, Y., Chen, S., Quan, X. & Yu, H. Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J. Am. Chem. Soc. 137, 11631–11636 (2015).

  103. 103.

    Liu, Y. et al. Selective electrochemical reduction of carbon dioxide to ethanol on a boron- and nitrogen-co-doped nanodiamond. Angew. Chem. Int. Ed. 56, 15607–15611 (2017).

  104. 104.

    Nakata, K., Ozaki, T., Terashima, C., Fujishima, A. & Einaga, Y. High-yield electrochemical production of formaldehyde from CO2 and seawater. Angew. Chem. Int. Ed. 53, 871–874 (2014).

  105. 105.

    Song, Y. et al. Metal-free nitrogen-doped mesoporous carbon for electroreduction of CO2 to ethanol. Angew. Chem. Int. Ed. 56, 10840–10844 (2017).

  106. 106.

    Huang, J. et al. Potential-induced nanoclustering of metallic catalysts during electrochemical CO2 reduction. Nat. Commun. 9, 3117 (2018).

  107. 107.

    Kim, Y.-G., Baricuatro, J. H. & Soriaga, M. P. Surface reconstruction of polycrystalline Cu electrodes in aqueous KHCO3 electrolyte at potentials in the early stages of CO2 reduction. Electrocatalysis 9, 526–530 (2018).

  108. 108.

    Kim, Y. G., Baricuatro, J. H., Javier, A., Gregoire, J. M. & Soriaga, M. P. The evolution of the polycrystalline copper surface, first to Cu(111) and then to Cu(100), at a fixed CO2RR potential: a study by operando EC-STM. Langmuir 30, 15053–15056 (2014). An operando EC-STM study showed the surface reconstruction from a polycrystalline Cu electrode first to Cu(111), and then to Cu(100) under CO 2 RR conditions.

  109. 109.

    Jiang, K. et al. Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. Nat. Catal. 1, 111–119 (2018).

  110. 110.

    Lee, S. Y. et al. Mixed copper states in anodized Cu electrocatalyst for stable and selective ethylene production from CO2 reduction. J. Am. Chem. Soc. 140, 8681–8689 (2018).

  111. 111.

    Singh, M. R., Kwon, Y., Lum, Y., Ager, J. W. & Bell, A. T. Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J. Am. Chem. Soc. 138, 13006–13012 (2016).

  112. 112.

    Resasco, J. et al. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 139, 11277–11287 (2017).

  113. 113.

    Pérez-Gallent, E., Marcandalli, G., Figueiredo, M. C., Calle-Vallejo, F. & Koper, M. T. M. Structure- and potential-dependent cation effects on CO reduction at copper single-crystal electrodes. J. Am. Chem. Soc. 139, 16412–16419 (2017).

  114. 114.

    Ayemoba, O. & Cuesta, A. Spectroscopic evidence of size-dependent buffering of interfacial pH by cation hydrolysis during CO2 electroreduction. ACS Appl. Mater. Interfaces 9, 27377–27382 (2017).

  115. 115.

    Schizodimou, A. & Kyriacou, G. Acceleration of the reduction of carbon dioxide in the presence of multivalent cations. Electrochim. Acta 78, 171–176 (2012).

  116. 116.

    Dunwell, M. et al. The central role of bicarbonate in the electrochemical reduction of CO2 on gold. J. Am. Chem. Soc. 139, 3774–3783 (2017).

  117. 117.

    Zhu, S., Jiang, B., Cai, W. & Shao, M. Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces. J. Am. Chem. Soc. 139, 15664–15667 (2017).

  118. 118.

    Wuttig, A., Yoon, Y., Ryu, J. & Surendranath, Y. Bicarbonate is not a general acid in Au-catalyzed CO2 electroreduction. J. Am. Chem. Soc. 139, 17109–17113 (2017).

  119. 119.

    Huang, Y., Ong, C. W. & Yeo, B. S. Effects of electrolyte anions on the reduction of carbon dioxide to ethylene and ethanol on copper (100) and (111) surfaces. ChemSusChem 11, 3299–3306 (2018).

  120. 120.

    McCrum, I. T., Akhade, S. A. & Janik, M. J. Electrochemical specific adsorption of halides on Cu 111,100, and 211: A density functional theory study. Electrochim. Acta 173, 302–309 (2015).

  121. 121.

    Varela, A. S., Ju, W., Reier, T. & Strasser, P. Tuning the catalytic activity and selectivity of Cu for CO2 electroreduction in the presence of halides. ACS Catal. 6, 2136–2144 (2016).

  122. 122.

    Schouten, K. J. P., Pérez Gallent, E. & Koper, M. T. M. The influence of pH on the reduction of CO and CO2 to hydrocarbons on copper electrodes. J. Electroanal. Chem. 716, 53–57 (2014).

  123. 123.

    Jouny, M., Luc, W. & Jiao, F. High-rate electroreduction of carbon monoxide to multi-carbon products. Nat. Catal. 1, 748–755 (2018).

  124. 124.

    Todoroki, M., Hara, K., Kudo, A. & Sakata, T. Electrochemical reduction of high pressure CO2 at Pb, Hg and In electrodes in an aqueous KHCO3 solution. J. Electroanal. Chem. 394, 199–203 (1995).

  125. 125.

    Melchaeva, O. et al. Electrochemical reduction of protic supercritical CO2 on copper electrodes. ChemSusChem 10, 3660–3670 (2017).

  126. 126.

    Rosen, B. A. et al. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 334, 643–644 (2011).

  127. 127.

    Sun, X. et al. Design of a Cu(i)/C-doped boron nitride electrocatalyst for efficient conversion of CO2 into acetic acid. Green Chem. 19, 2086–2091 (2017).

  128. 128.

    Pătru, A., Binninger, T., Pribyl, B. & Schmidt, T. J. Design principles of bipolar electrochemical co-electrolysis cells for efficient reduction of carbon dioxide from gas phase at low temperature. J. Electrochem. Soc. 166, F34–F43 (2019).

  129. 129.

    Gao, D. et al. Gas-phase electrocatalytic reduction of carbon dioxide using electrolytic cell based on phosphoric acid-doped polybenzimidazole membrane. J. Energy Chem. 23, 694–700 (2014).

  130. 130.

    Goodpaster, J. D., Bell, A. T. & Head-Gordon, M. Identification of possible pathways for C–C bond formation during electrochemical reduction of CO2: new theoretical insights from an improved electrochemical model. J. Phys. Chem. Lett. 7, 1471–1477 (2016).

  131. 131.

    Mills, J. N., McCrum, I. T. & Janik, M. J. Alkali cation specific adsorption onto fcc(111) transition metal electrodes. Phys. Chem. Chem. Phys. 16, 13699–13707 (2014).

  132. 132.

    Deng, Y. & Yeo, B. S. Characterization of electrocatalytic water splitting and CO2 reduction reactions using in situ/operando Raman spectroscopy. ACS Catal. 7, 7873–7889 (2017).

  133. 133.

    Dutta, A., Kuzume, A., Rahaman, M., Vesztergom, S. & Broekmann, P. Monitoring the chemical state of catalysts for CO2 electroreduction: an in operando study. ACS Catal. 5, 7498–7502 (2015).

  134. 134.

    Zhu, C. et al. In-situ liquid cell transmission electron microscopy investigation on oriented attachment of gold nanoparticles. Nat. Commun. 9, 421 (2018).

Download references

Acknowledgements

This work was supported by the European Research Council under grant ERC-OPERANDOCAT (ERC-725915) and the German Federal Ministry of Education and Research (BMBF) under grants #03SF0523C-’CO2EKAT’ and #033RCOO4D-’e-Ethylene’, as well as the German Research Foundation (DFG) - SFB 1316, subproject B1.

Author information

Correspondence to Beatriz Roldan Cuenya.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading