Article | Published:

Asymmetric formation of γ-lactams via C–H amidation enabled by chiral hydrogen-bond-donor catalysts

Nature Catalysisvolume 2pages219227 (2019) | Download Citation


Chiral γ-lactams are effective structural motifs found in numerous pharmaceutical agents. Despite their importance, current approaches mostly necessitate laborious synthetic steps employing pre-functionalized starting materials under demanding conditions. In this regard, asymmetric C−H amidation can provide an ideal platform for rapid construction of this valuable scaffold from unactivated materials, but unsolved issues have hampered the strategy. Here, we report iridium catalysts that overcome these challenges by utilizing chiral hydrogen-bond-donor ligands. The protocol makes use of easily accessible substrates derived from carboxylic acid, which display excellent efficiency and enantioselectivity towards direct amidation of prochiral sp3 C−H bonds. Desymmetrization of meso-substrates is also achieved, where two consecutive stereogenic centres are selectively introduced in a single transformation. Computational investigations reveal the presence of crucial hydrogen bonding in the stereo-determining transition states and spectroscopic analysis of the structural analogues further corroborate this non-covalent interaction.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The X-ray crystallographic coordinates for the structures reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition nos. 1873622–1873624 and 1884674. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via All other data are available from the authors upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Fisher, J. F., Meroueh, S. O. & Mobashery, S. Bacterial resistance to β-lactam antibiotics: compelling opportunism, compelling opportunity. Chem. Rev. 105, 395–424 (2005).

  2. 2.

    Caruano, J., Muccioli, G. G. & Robiette, R. Biologically active γ-lactams: synthesis and natural sources. Org. Biomol. Chem. 14, 10134–10156 (2016).

  3. 3.

    Ye, L.-W., Shu, C. & Gagosz, F. Recent progress towards transition metal-catalyzed synthesis of γ-lactams. Org. Biomol. Chem. 12, 1833–1845 (2014).

  4. 4.

    Ye, J., Kalvet, I., Schoenebeck, F. & Rovis, T. Direct α-alkylation of primary aliphatic amines enabled by CO2 and electrostatics. Nat. Chem. 10, 1037–1041 (2018).

  5. 5.

    Png, Z. M., Cabrera-Pardo, J. R., Peiró Cadahía, J. & Gaunt, M. J. Diastereoselective C–H carbonylative annulation of aliphatic amines: a rapid route to functionalized γ-lactams. Chem. Sci. 9, 7628–7633 (2018).

  6. 6.

    Danishefsky, S., Berman, E., Clizbe, L. A. & Hirama, M. A simple synthesis of l-γ-carboxyglutamate and derivatives thereof. J. Am. Chem. Soc. 101, 4385–4386 (1979).

  7. 7.

    Seki, T., Tanaka, S. & Kitamura, M. Enantioselective synthesis of pyrrolidine-, piperidine-, and azepane-type N-heterocycles with α-alkenyl substitution: the CpRu-catalyzed dehydrative intramolecular N-allylation approach. Org. Lett. 14, 608–611 (2012).

  8. 8.

    Yuan, Q., Liu, D. & Zhang, W. Iridium-catalyzed asymmetric hydrogenation of β,γ-unsaturated γ-lactams: scope and mechanistic studies. Org. Lett. 19, 1144–1147 (2017).

  9. 9.

    Tahara, Y.-k, Michino, M., Ito, M., Kanyiva, K. S. & Shibata, T. Enantioselective sp 3 C–H alkylation of γ-butyrolactam by a chiral Ir(i) catalyst for the synthesis of 4-substituted γ-amino acids. Chem. Commun. 51, 16660–16663 (2015).

  10. 10.

    Gensch, T., Hopkinson, M. N., Glorius, F. & Wencel-Delord, J. Mild metal-catalyzed C–H activation: examples and concepts. Chem. Soc. Rev. 45, 2900–2936 (2016).

  11. 11.

    Davies, H. M. L. & Morton, D. Recent advances in C–H functionalization. J. Org. Chem. 81, 343–350 (2016).

  12. 12.

    Roizen, J. L., Harvey, M. E. & Du Bois, J. Metal-catalyzed nitrogen-atom transfer methods for the oxidation of aliphatic C–H bonds. Acc. Chem. Res. 45, 911–922 (2012).

  13. 13.

    Park, Y., Kim, Y. & Chang, S. Transition metal-catalyzed C–H amination: scope, mechanism, and applications. Chem. Rev. 117, 9247–9301 (2017).

  14. 14.

    Liang, J.-L., Yuan, S.-X., Huang, J.-S., Yu, W.-Y. & Che, C.-M. Highly diastereo- and enantioselective intramolecular amidation of saturated C–H bonds catalyzed by ruthenium porphyrins. Angew. Chem. Int. Ed. 41, 3465–3468 (2002).

  15. 15.

    Reddy, R. P. & Davies, H. M. L. Dirhodium tetracarboxylates derived from adamantylglycine as chiral catalysts for enantioselective C–H aminations. Org. Lett. 8, 5013–5016 (2006).

  16. 16.

    Zalatan, D. N. & Du Bois, J. A chiral rhodium carboxamidate catalyst for enantioselective C–H amination. J. Am. Chem. Soc. 130, 9220–9221 (2008).

  17. 17.

    Milczek, E., Boudet, N. & Blakey, S. Enantioselective C–H amination using cationic ruthenium(ii)–pybox catalysts. Angew. Chem. Int. Ed. 47, 6825–6828 (2008).

  18. 18.

    Ichinose, M. et al. Enantioselective intramolecular benzylic C–H bond amination: efficient synthesis of optically active benzosultams. Angew. Chem. Int. Ed. 50, 9884–9887 (2011).

  19. 19.

    McIntosh, J. A. et al. Enantioselective intramolecular C–H amination catalyzed by engineered cytochrome P450 enzymes in vitro and in vivo. Angew. Chem. Int. Ed. 52, 9309–9312 (2013).

  20. 20.

    Dydio, P., Key, H. M., Hayashi, H., Clark, D. S. & Hartwig, J. F. Chemoselective, enzymatic C–H bond amination catalyzed by a cytochrome P450 containing an Ir(Me)–PIX cofactor. J. Am. Chem. Soc. 139, 1750–1753 (2017).

  21. 21.

    Prier, C. K., Zhang, R. K., Buller, A. R., Brinkmann-Chen, S. & Arnold, F. H. Enantioselective, intermolecular benzylic C–H amination catalysed by an engineered iron-haem enzyme. Nat. Chem. 9, 629–634 (2017).

  22. 22.

    Li, C. et al. Catalytic radical process for enantioselective amination of C(sp 3)–H bonds. Angew. Chem. Int. Ed. 57, 16837–16841 (2018).

  23. 23.

    Liang, C. et al. Efficient diastereoselective intermolecular rhodium-catalyzed C–H amination. Angew. Chem. Int. Ed. 45, 4641–4644 (2006).

  24. 24.

    Nishioka, Y., Uchida, T. & Katsuki, T. Enantio- and regioselective intermolecular benzylic and allylic C–H bond amination. Angew. Chem. Int. Ed. 52, 1739–1742 (2013).

  25. 25.

    Pinho e Melo, T. N. V. D. in Organic Azides: Syntheses and Applications (eds Bräse, S. & Banert, K.) Ch. 3 (Wiley, New York, 2010).

  26. 26.

    Lebel, H. & Leogane, O. Boc-protected amines via a mild and efficient one-pot Curtius rearrangement. Org. Lett. 7, 4107–4110 (2005).

  27. 27.

    Li, D., Wu, T., Liang, K. & Xia, C. Curtius-like rearrangement of an iron–nitrenoid complex and application in biomimetic synthesis of bisindolylmethanes. Org. Lett. 18, 2228–2231 (2016).

  28. 28.

    Park, Y., Park, K. T., Kim, J. G. & Chang, S. Mechanistic studies on the Rh(iii)-mediated amido transfer process leading to robust C–H amination with a new type of amidating reagent. J. Am. Chem. Soc. 137, 4534–4542 (2015).

  29. 29.

    Park, Y., Jee, S., Kim, J. G. & Chang, S. Study of sustainability and scalability in the Cp*Rh(iii)-catalyzed direct C−H amidation with 1,4,2-dioxazol-5-ones. Org. Process Res. Dev. 19, 1024–1029 (2015).

  30. 30.

    Park, Y., Heo, J., Baik, M.-H. & Chang, S. Why is the Ir(iii)-mediated amido transfer much faster than the Rh(iii)-mediated reaction? A combined experimental and computational study. J. Am. Chem. Soc. 138, 14020–14029 (2016).

  31. 31.

    Hwang, Y., Park, Y. & Chang, S. Mechanism-driven approach to develop a mild and versatile C–H amidation through IrIII catalysis. Chem. Eur. J. 23, 11147–11152 (2017).

  32. 32.

    Hong, S. Y. et al. Selective formation of γ-lactams via C–H amidation enabled by tailored iridium catalysts. Science 359, 1016–1021 (2018).

  33. 33.

    Hennessy, E. T. & Betley, T. A. Complex N-heterocycle synthesis via iron-catalyzed, direct C–H bond amination. Science 340, 591–595 (2013).

  34. 34.

    Murata, K., Ikariya, T. & Noyori, R. New chiral rhodium and iridium complexes with chiral diamine ligands for asymmetric transfer hydrogenation of aromatic ketones. J. Org. Chem. 64, 2186–2187 (1999).

  35. 35.

    Camps, P. et al. Synthesis and absolute configuration of novel N,O-psiconucleosides using (R)-N-phenylpantolactam as a resolution agent. J. Org. Chem. 73, 6657–6665 (2008).

  36. 36.

    Heiden, Z. M., Gorecki, B. J. & Rauchfuss, T. B. Lewis base adducts derived from transfer hydrogenation catalysts: scope and selectivity. Organometallics 27, 1542–1549 (2008).

  37. 37.

    Koike, T. & Ikariya, T. Mechanistic aspects of formation of chiral ruthenium hydride complexes from 16‐electron ruthenium amide complexes and formic acid: facile reversible decarboxylation and carboxylation. Adv. Synth. Catal. 346, 37–41 (2004).

  38. 38.

    Muñiz, K. et al. Metal-ligand bifunctional activation and transfer of N−H bonds. Chem. Commun. 47, 4911–4913 (2011).

  39. 39.

    Jeffrey, G. A. & Takagi, S. Hydrogen-bond structure in carbohydrate crystals. Acc. Chem. Res. 11, 264–270 (1978).

  40. 40.

    Soni, R. et al. The importance of the N–H bond in Ru/TsDPEN complexes for asymmetric transfer hydrogenation of ketones and imines. Org. Biomol. Chem. 9, 3290–3294 (2011).

  41. 41.

    Flack, H. D. & Bernardinelli, G. The use of X-ray crystallography to determine absolute configuration. Chirality 20, 681–690 (2008).

  42. 42.

    Liang, J.-L., Yuan, S.-X., Huang, J.-S. & Che, C.-M. Intramolecular C−N bond formation reactions catalyzed by ruthenium porphyrins: amidation of sulfamate esters and aziridination of unsaturated sulfonamides. J. Org. Chem. 69, 3610–3619 (2004).

  43. 43.

    Saint-Denis, T. G., Zhu, R.-Y., Chen, G., Wu, Q.-F. & Yu, J.-Q. Enantioselective C(sp 3)‒H bond activation by chiral transition metal catalysts. Science 359, eaao4798 (2018).

Download references


This research was supported by the Institute for Basic Science (IBS-R010-D1) in Korea. The authors thank D. Kim (Institute for Basic Science) for X-ray analysis.

Author information


  1. Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea

    • Yoonsu Park
    •  & Sukbok Chang
  2. Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, Republic of Korea

    • Yoonsu Park
    •  & Sukbok Chang


  1. Search for Yoonsu Park in:

  2. Search for Sukbok Chang in:


Y.P. and S.C. conceived and designed the project and wrote the manuscript. Y.P. carried out the experiments and DFT calculations. S.C. organized the research. Both authors analysed the data, discussed the results and commented on the manuscript.

Competing interests

Y.P. and S.C. are inventors on a patent application no. KR10–2018–0174064, submitted by IBS and KAIST, which covers the preparation and application of the related transition metal catalysts.

Corresponding author

Correspondence to Sukbok Chang.

Supplementary information

  1. Supplementary Information

    Supplementary Methods, Supplementary Figures 1–36, Supplementary Discussion, Supplementary Tables 1–5, Supplementary Notes 1–2, Supplementary References

  2. Supplementary Data 1

    Cartesian coordinates for the optimized structures

  3. CCDC reference 1873623

    Crystallographic Data for compound 6

  4. CCDC reference 1873624

    Crystallographic Data for compound 31

  5. CCDC reference 1884674

    Crystallographic Data for compound Ir10

  6. CCDC reference 1873622

    Crystallographic Data for compound Ir13

About this article

Publication history




Issue Date


Further reading