Structure of the catalytically active copper–ceria interfacial perimeter


Cu/CeO2 catalysts are highly active for the low-temperature water–gas shift—a core reaction in syngas chemistry for tuning the H2/CO/CO2 proportions in feed streams—but the direct identification and quantitative description of the active sites remain challenging. Here we report that the active copper clusters consist of a bottom layer of mainly Cu+ atoms bonded on the oxygen vacancies (Ov) of ceria, in a form of Cu+–Ov–Ce3+, and a top layer of Cu0 atoms coordinated with the underlying Cu+ atoms. This atomic structure model is based on directly observing copper clusters dispersed on ceria by a combination of scanning transmission electron microscopy and electron energy loss spectroscopy, in situ probing of the interfacial copper–ceria bonding environment by infrared spectroscopy and rationalization by density functional theory calculations. These results, together with reaction kinetics, reveal that the reaction occurs at the copper–ceria interfacial perimeter via a site cooperation mechanism: the Cu+ site chemically adsorbs CO whereas the neighbouring Ov–Ce3+ site dissociatively activates H2O.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Identification of copper clusters on ceria in the Cu-473 catalyst.
Fig. 2: Geometric structures of copper clusters on ceria in the Cu-773 catalyst.
Fig. 3: Binding environment of the copper–ceria interface probed by in situ infrared spectroscopy.
Fig. 4: Atomic structure of the copper–ceria interfacial perimeter.
Fig. 5: WGS reaction over the Cu-T catalysts.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Li, Y., Fu, Q. & Flytzani-Stephanopoulos, M. Low-temperature water–gas shift reaction over Cu- and Ni-loaded cerium oxide catalysts. Appl. Catal. B 27, 179–191 (2000).

    Article  Google Scholar 

  2. 2.

    Wang, X. et al. In situ studies of the active sites for the water gas shift reaction over Cu−CeO2 catalysts: complex interaction between metallic copper and oxygen vacancies of ceria. J. Phys. Chem. B 110, 428–434 (2006).

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Gawade, P., Mirkelamoglu, B. & Ozkan, U. S. The role of support morphology and impregnation medium on the water gas shift activity of ceria-supported copper catalysts. J. Phys. Chem. C 114, 18173–18181 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    Si, R. et al. Structure sensitivity of the low-temperature water–gas shift reaction on Cu–CeO2 catalysts. Catal. Today 180, 68–80 (2012).

    CAS  Article  Google Scholar 

  5. 5.

    Yao, S. et al. Morphological effects of the nanostructured ceria support on the activity and stability of CuO/CeO2 catalysts for the water–gas shift reaction. Phys. Chem. Chem. Phys. 16, 17183–17195 (2014).

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Ren, Z., Peng, F., Li, J., Liang, X. & Chen, B. Morphology-dependent properties of Cu/CeO2 catalysts for the water–gas shift reaction. Catalysts 7, 48–60 (2017).

    Article  CAS  Google Scholar 

  7. 7.

    Chen, C. et al. Cu/CeO2 catalyst for water–gas shift reaction: effect of CeO2 pretreatment. ChemPhysChem 19, 1448–1455 (2018).

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Shen, W., Ichihashi, Y. & Matsumura, Y. Low-temperature methanol synthesis from carbon monoxide and hydrogen over ceria supported copper catalyst. Appl. Catal. A 282, 221–226 (2005).

    CAS  Article  Google Scholar 

  9. 9.

    Yang, R. et al. Performance of Cu-based catalysts in low-temperature methanol synthesis. Adv. Mater. Res. 1004–1005, 1623–1626 (2014).

    Article  Google Scholar 

  10. 10.

    Graciani, J. et al. Highly active copper–ceria and copper–ceria–titania catalysts for methanol synthesis from CO2. Science 345, 546–551 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    Rodriguez, J. A. et al. Hydrogenation of CO2 to methanol: importance of metal–oxide and metal–carbide interfaces in the activation of CO2. ACS Catal. 5, 6696–6706 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    Ouyang, B., Tan, W. & Li, B. Morphology effect of nanostructure ceria on the Cu/CeO2 catalysts for synthesis of methanol from CO2 hydrogenation. Catal. Commun. 95, 36–39 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    van de Water, L. G. A., Wilkinson, S. K., Smith, R. A. P. & Watson, M. J. Understanding methanol synthesis from CO/H2 feeds over Cu/CeO2 catalysts. J. Catal. 364, 57–68 (2018).

    Article  CAS  Google Scholar 

  14. 14.

    Konsolakis, M. The role of copper–ceria interactions in catalysis science: recent theoretical and experimental advances. Appl. Catal. B 198, 49–66 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Trovarelli, A. & Llorca, J. Ceria catalysts at nanoscale: how do crystal shapes shape catalysis? ACS Catal. 7, 4716–4735 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    Rodriguez, J. A., Grinter, D. C., Liu, Z., Palomino, R. M. & Senanayake, S. D. Ceria-based model catalysts: fundamental studies on the importance of the metal–ceria interface in CO oxidation, the water–gas shift, CO2 hydrogenation, and methane and alcohol reforming. Chem. Soc. Rev. 46, 1824–1841 (2017).

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Mudiyanselage, K. et al. Importance of the metal–oxide interface in catalysis: in situ studies of the water–gas shift reaction by ambient-pressure X-ray photoelectron spectroscopy. Angew. Chem. Int. Ed. 52, 5101–5105 (2013).

    CAS  Article  Google Scholar 

  18. 18.

    Senanayake, S. D., Stacchiola, D. & Rodriguez, J. A. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water–gas shift reaction. Acc. Chem. Res. 46, 1702–1711 (2013).

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Szabová, L., Camellone, M. F., Huang, M., Matolín, V. & Fabris, S. Thermodynamic, electronic and structural properties of Cu/CeO2 surfaces and interfaces from first-principles DFT + U calculations. J. Chem. Phys. 133, 234705 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Yang, Z., Xie, L., Ma, D. & Wang, G. Origin of the high activity of the ceria-supported copper catalyst for H2O dissociation. J. Phys. Chem. C 115, 6730–6740 (2011).

    CAS  Article  Google Scholar 

  21. 21.

    James, T. E., Hemmingson, S. L., Ito, T. & Campbell, C. T. Energetics of Cu adsorption and adhesion onto reduced CeO2(111) surfaces by calorimetry. J. Phys. Chem. C 119, 17209–17217 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    James, T. E., Hemmingson, S. L. & Campbell, C. T. Energy of supported metal catalysts: from single atoms to large metal nanoparticles. ACS Catal. 5, 5673–5678 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Chutia, A. et al. The adsorption of Cu on the CeO2(110) surface. Phys. Chem. Chem. Phys. 19, 27191–27203 (2017).

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Si, R. & Flytzani-Stephanopoulos, M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au–CeO2 catalysts for the water–gas shift reaction. Angew. Chem. Int. Ed. 47, 2884–2887 (2008).

    CAS  Article  Google Scholar 

  25. 25.

    Farmer, J. A. & Campbell, C. T. Ceria maintains smaller metal catalyst particles by strong metal-support bonding. Science 329, 933–936 (2010).

    CAS  Article  Google Scholar 

  26. 26.

    Yamada, Y. et al. Nanocrystal bilayer for tandem catalysis. Nat. Chem. 3, 372–376 (2011).

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Yoshida, H. et al. Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions. Science 335, 317–319 (2012).

    CAS  Article  Google Scholar 

  28. 28.

    Cargnello, M. et al. Control of metal nanocrystal size reveals metal–support interface role for ceria catalysts. Science 341, 771–773 (2013).

    CAS  Article  Google Scholar 

  29. 29.

    Lin, Y. et al. Adhesion and atomic structures of gold on ceria nanostructures: the role of surface structure and oxidation state of ceria supports. Nano Lett. 15, 5375–5381 (2015).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Gänzler, A. M. et al. Tuning the Pt/CeO2 interface by in situ variation of the Pt particle size. ACS Catal. 8, 4800–4811 (2018).

    Article  CAS  Google Scholar 

  31. 31.

    Chen, A., Zhou, Y., Ta, N., Li, Y. & Shen, W. Redox properties and catalytic performance of ceria–zirconia nanorods. Catal. Sci. Technol. 5, 4184–4192 (2015).

    CAS  Article  Google Scholar 

  32. 32.

    Tang, X. et al. CuO/CeO2catalysts: redox features and catalytic behaviors. Appl. Catal. A 288, 116–125 (2005).

    CAS  Article  Google Scholar 

  33. 33.

    Wang, W. et al. Crystal plane effect of ceria on supported copper oxide cluster catalyst for CO oxidation: importance of metal–support Interaction. ACS Catal. 7, 1313–1329 (2017).

    CAS  Article  Google Scholar 

  34. 34.

    Wu, L. et al. Oxidation state and lattice expansion of CeO2–x nanoparticles as a function of particle size. Phys. Rev. B 69, 125415 (2004).

    Article  CAS  Google Scholar 

  35. 35.

    Keast, V. J., Scott, A. J., Brydson, R., Williams, D. B. & Bruley, J. Electron energy-loss near-edge structure—a tool for the investigation of electronic structure on the nanometre scale. J. Microsc. 203, 135–175 (2001).

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Wagner, J. B. et al. In situ electron energy loss spectroscopy studies of gas-dependent metal–support interactions in Cu/ZnO catalysts. J. Phys. Chem. B 107, 7753–7758 (2003).

    CAS  Article  Google Scholar 

  37. 37.

    Wang, Y. & Wöll, C. IR spectroscopic investigations of chemical and photochemical reactions on metal oxides: bridging the materials gap. Chem. Soc. Rev. 46, 1875–1932 (2017).

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Yang, C. et al. Chemical activity of oxygen vacancies on ceria: a combined experimental and theoretical study on CeO2(111). Phys. Chem. Chem. Phys. 16, 24165–24168 (2014).

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Yang, C. et al. Surface faceting and reconstruction of ceria nanoparticles. Angew. Chem. Int. Ed. 56, 375–379 (2017).

    CAS  Article  Google Scholar 

  40. 40.

    Cox, D. F. & Schulz, K. H. Interaction of CO with Cu+ cations: CO adsorption on Cu2O(100). Surf. Sci. 249, 138–148 (1991).

    CAS  Article  Google Scholar 

  41. 41.

    Martı́nez-Arias, A., Fernández-Garcı́a, M., Soria, J. & Conesa, J. C. Spectroscopic study of a Cu/CeO2 catalyst subjected to redox treatments in carbon monoxide and oxygen. J. Catal. 182, 367–377 (1999).

    Article  Google Scholar 

  42. 42.

    Vollmer, S., Witte, G. & Wöll, C. Determination of site specific adsorption energies of CO on copper. Catal. Lett. 77, 97–101 (2001).

    CAS  Article  Google Scholar 

  43. 43.

    Chen, S. et al. Anchoring high-concentration oxygen vacancies at interfaces of CeO2–x/Cu toward enhanced activity for preferential CO oxidation. ACS Appl. Mater. Interfaces 7, 22999–23007 (2015).

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Fabris, S., Vicario, G., Balducci, G., de Gironcoli, S. & Baroni, S. Electronic and atomistic structures of clean and reduced ceria surfaces. J. Phys. Chem. B 109, 22860–22867 (2005).

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Lykhach, Y. et al. Counting electrons on supported nanoparticles. Nat. Mater. 15, 284–288 (2016).

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Branda, M. M., Hernández, N. C., Sanz, J. F. & Illas, F. Density functional theory study of the interaction of Cu, Ag, and Au atoms with the regular CeO2(111) surface. J. Phys. Chem. C 114, 1934–1941 (2010).

    CAS  Article  Google Scholar 

  47. 47.

    Figueroba, A., Kovács, G., Bruix, A. & Neyman, K. M. Towards stable single-atom catalysts: strong binding of atomically dispersed transition metals on the surface of nanostructured ceria. Catal. Sci. Technol. 6, 6806–6813 (2016).

    CAS  Article  Google Scholar 

  48. 48.

    Li, L. et al. Water–gas shift reaction over CuO/CeO2 catalysts: effect of the thermal stability and oxygen vacancies of CeO2 supports previously prepared by different methods. Catal. Lett. 130, 532–540 (2009).

    CAS  Article  Google Scholar 

  49. 49.

    López. Cámara, A., Chansai, S., Hardacre, C. & Martínez-Arias, A. The water–gas shift reaction over CeO2/CuO: operando SSITKA–DRIFTS–mass spectrometry study of low temperature mechanism. Int. J. Hydrogen Energy 39, 4095–4101 (2014).

    Article  CAS  Google Scholar 

  50. 50.

    Caldas, P. C. P., Gallo, J. M. R., Lopez-Castillo, A., Zanchet, D. & Bueno, J. M. C. The structure of the Cu–CuO sites determines the catalytic activity of Cu nanoparticles. ACS Catal. 7, 2419–2424 (2017).

    CAS  Article  Google Scholar 

Download references


This work is supported by the National Natural Science Foundation of China (grant numbers 91645107, 21533009, 21621063 and 21761132031), the Deutsche Forschungsgemeinschaft (WA 2535/2-1), the ‘Science and Technology of Nanosystems’ Programme (grant no. 432202) of Germany and the EU-H2020 research and innovation programme (grant no. 654360 NFFA-Europe). X.Y. and C.Y. thank PhD fellowships sponsored by the China Scholarship Council.

Author information




A.C., J.N., C.J. and Y.L. prepared the catalysts and conducted the reaction tests. X.Y., C.Y., A.N., C.W. and Y.W. performed the UHV infrared analysis. S.K. and J.S. performed chemical titrations and reaction tests. Y.Z., S.M., J.L., T.A. and S.H. conducted the STEM and EELS analyses. M.F.C. and S.F. performed the DFT calculations on the interfacial structure. S.F. and C.W. contributed to thorough discussions on this work. Y.Z., J.S., Y.W. and W.S. designed the experiments, analysed the data and wrote the paper.

Corresponding authors

Correspondence to Yan Zhou or Jens Sehested or Yuemin Wang or Wenjie Shen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Methods, Supplementary Discussion, Supplementary Figures 1–13, Supplementary Tables 1–6, Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, A., Yu, X., Zhou, Y. et al. Structure of the catalytically active copper–ceria interfacial perimeter. Nat Catal 2, 334–341 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing