Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper


The renewable-energy-powered electrocatalytic conversion of carbon dioxide and carbon monoxide into carbon-based fuels provides a means for the storage of renewable energy. We sought to convert carbon monoxide—an increasingly available and low-cost feedstock that could benefit from an energy-efficient upgrade in value—into n-propanol, an alcohol that can be directly used as engine fuel. Here we report that a catalyst consisting of highly fragmented copper structures can bring C1 and C2 binding sites together, and thereby promote further coupling of these intermediates into n-propanol. Using this strategy, we achieved an n-propanol selectivity of 20% Faradaic efficiency at a low potential of −0.45 V versus the reversible hydrogen electrode (ohmic corrected) with a full-cell energetic efficiency of 10.8%. We achieved a high reaction rate that corresponds to a partial current density of 8.5 mA cm–2 for n-propanol.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DFT calculation results for C1, C2 and C3.
Fig. 2: Materials characterization.
Fig. 3: TEM imaging of crystalline structure of all the samples.
Fig. 4: Catalyst performance in a CORR flow cell.

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.


  1. Won, D. H. et al. Highly efficient, selective, and stable CO2 electroreduction on a hexagonal Zn catalyst. Angew. Chem. Int. Ed. 55, 9297–9300 (2016).

    Article  CAS  Google Scholar 

  2. Ma, M., Trześniewski, B. J., Xie, J. & Smith, W. A. Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-derived nanostructured silver electrocatalysts. Angew. Chem. Int. Ed. 55, 9748–9752 (2016).

    Article  CAS  Google Scholar 

  3. Liu, M. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016).

    Article  CAS  Google Scholar 

  4. Verma, S. et al. Insights into the low overpotential electroreduction of CO2 to CO on a supported gold catalyst in an alkaline flow electrolyzer. ACS Energy Lett. 3, 193–198 (2017).

    Article  Google Scholar 

  5. Dai, L. et al. Ultrastable atomic copper nanosheets for selective electrochemical reduction of carbon dioxide. Sci. Adv. 3, e1701069 (2017).

    Article  Google Scholar 

  6. Gao, S. et al. Ultrathin Co3O4 layers realizing optimized CO2 electroreduction to formate. Angew. Chem. Int. Ed. 55, 698–702 (2016).

    Article  CAS  Google Scholar 

  7. Wang, Y., Zhou, J., Lv, W., Fang, H. & Wang, W. Electrochemical reduction of CO2 to formate catalyzed by electroplated tin coating on copper foam. Appl. Surf. Sci. 362, 394–398 (2016).

    Article  CAS  Google Scholar 

  8. Klinkova, A. et al. Rational design of efficient palladium catalysts for electroreduction of carbon dioxide to formate. ACS Catal. 6, 8115–8120 (2016).

    Article  CAS  Google Scholar 

  9. Zheng, X. et al. Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule 1, 794–805 (2017).

    Article  CAS  Google Scholar 

  10. De Luna, P. et al. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 1, 103–110 (2018).

    Article  Google Scholar 

  11. Mistry, H. et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 7, 12123 (2016).

    Article  Google Scholar 

  12. Pang, Y. et al. Joint tuning of nanostructured Cu-oxide morphology and local electrolyte programs high-rate CO2 reduction to C2H4. Green Chem. 19, 4023–4030 (2017).

    Article  CAS  Google Scholar 

  13. Ma, S. et al. One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. J. Power Sources 301, 219–228 (2016).

    Article  CAS  Google Scholar 

  14. Ma, S. et al. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu–Pd catalysts with different mixing patterns. J. Am. Chem. Soc. 139, 47–50 (2016).

    Article  Google Scholar 

  15. Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012).

    Article  CAS  Google Scholar 

  16. Loiudice, A. et al. Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew. Chem. Int. Ed. 55, 5789–5792 (2016).

    Article  CAS  Google Scholar 

  17. Papa, A. J. in Ullmann’s Encyclopedia of Industrial Chemistry (eds Elvers, B. et al.) 243–254 (Wiley, Weinheim, 2000).

  18. Hori, Y., Murata, A., Takahashi, R. & Suzuki, S. Enhanced formation of ethylene and alcohols at ambient temperature and pressure in electrochemical reduction of carbon dioxide at a copper electrode. J. Chem. Soc. Chem. Comm. 1, 17–19 (1988).

  19. Ren, D., Wong, N. T., Handoko, A. D., Huang, Y. & Yeo, B. S. Mechanistic insights into the enhanced activity and stability of agglomerated Cu nanocrystals for the electrochemical reduction of carbon dioxide to n-propanol. J. Phys. Chem. Lett. 7, 20–24 (2015).

    Article  Google Scholar 

  20. Kim, D., Kley, C. S., Li, Y. & Yang, P. Copper nanoparticle ensembles for selective electroreduction of CO2 to C2-C3 products. Proc. Natl Acad. Sci. USA 114, 10560–10565 (2017).

    Article  CAS  Google Scholar 

  21. Rahaman, M., Dutta, A., Zanetti, A. & Broekmann, P. Electrochemical reduction of CO2 into multicarbon alcohols on activated Cu mesh catalysts: an identical location (IL) study. ACS Catal. 7, 7946–7956 (2017).

    Article  CAS  Google Scholar 

  22. Jiang, K. et al. Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. Nat. Catal. 1, 111–119 (2018).

    Article  Google Scholar 

  23. Zhuang, T. T. et al. Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 1, 421–428 (2018).

    Article  Google Scholar 

  24. Kortlever, R., Shen, J., Schouten, K. J. P., Calle-Vallejo, F. & Koper, M. T. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015).

    Article  CAS  Google Scholar 

  25. Ou, L., Long, W., Chen, Y. & Jin, J. New reduction mechanism of CO dimer by hydrogenation to C2H4 on a Cu(100) surface: theoretical insight into the kinetics of the elementary steps. RSC Adv. 5, 96281–96289 (2015).

    Article  CAS  Google Scholar 

  26. Xiao, H., Cheng, T., Goddard, W. A. III & Sundararaman, R. Mechanistic explanation of the pH dependence and onset potentials for hydrocarbon products from electrochemical reduction of CO on Cu(111). J. Am. Chem. Soc. 138, 483–486 (2016).

    Article  CAS  Google Scholar 

  27. Birat, J. P. & Maizières-lès-Metz, D. Global Technology Roadmap for CCS in Industry—Steel Sectorial Report (UNIDO Global Technology Roadmap for CCS in Industry—Sectoral Experts Meeting, Amsterdam, 2010.)

  28. Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    Article  CAS  Google Scholar 

  29. Verdaguer-Casadevall, A. et al. Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J. Am. Chem. Soc. 137, 9808–9811 (2015).

    Article  CAS  Google Scholar 

  30. Raciti, D. et al. Low-overpotential electroreduction of carbon monoxide using copper nanowires. ACS Catal. 7, 4467–4472 (2017).

    Article  CAS  Google Scholar 

  31. Bertheussen, E. et al. Acetaldehyde as an intermediate in the electroreduction of carbon monoxide to ethanol on oxide-derived copper. Angew. Chem. Int. Ed. 55, 1450–1454 (2016).

    Article  CAS  Google Scholar 

  32. Jouny, M., Luc, W. & Jiao, F. High-rate electroreduction of carbon monoxide to multi-carbon products. Nat. Catal. 1, 748–755 (2018).

    Article  Google Scholar 

  33. Zhuang, T. T. et al. Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nat. Cat. 1, 946–951 (2018).

    Article  Google Scholar 

  34. Li, J. et al. Copper adparticle enabled selective electrosynthesis of n-propanol. Nat. Commun. 9, 4614 (2018).

    Article  Google Scholar 

  35. Feng, X., Jiang, K., Fan, S. & Kanan, M. W. A direct grain-boundary-activity correlation for CO electroreduction on Cu nanoparticles. ACS Cent. Sci. 2, 169–174 (2016).

    Article  CAS  Google Scholar 

  36. Cheng, T., Xiao, H. & Goddard, W. A. Nature of the active sites for CO reduction on copper nanoparticles; suggestions for optimizing performance. J. Am. Chem. Soc. 139, 11642–11645 (2017).

    Article  CAS  Google Scholar 

  37. Xiao, H., Cheng, T. & Goddard, W. A. Atomistic mechanisms underlying selectivities in C1 and C2 products from electrochemical reduction of CO on Cu(111). J. Am. Chem. Soc. 139, 130–136 (2017).

    Article  CAS  Google Scholar 

  38. Montoya, J. H., Shi, C., Chan, K. & Nørskov, J. K. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 6, 2032–2037 (2015).

    Article  CAS  Google Scholar 

  39. Zhuang, T. T. et al. Controlled synthesis of kinked ultrathin ZnS nanorods/nanowires triggered by chloride ions: a case study. Small 10, 1394–1402 (2014).

    Article  CAS  Google Scholar 

  40. Lee, S., Kim, D. & Lee, J. Electrocatalytic production of C3–C4 compounds by conversion of CO2 on a chloride-induced bi-phasic Cu2O–Cu catalyst. Angew. Chem. Int. Ed. 54, 14701–14705 (2015).

    Article  CAS  Google Scholar 

  41. Dinh, C. T. et al. Selective CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    Article  CAS  Google Scholar 

  42. Mariano, R. G., McKelvey, K., White, H. S. & Kanan, M. W. Selective increase in CO2 electroreduction activity at grain-boundary surface terminations. Science 358, 1187–1192 (2017).

    Article  CAS  Google Scholar 

  43. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  44. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  45. Kresse, G. & Hafner, J. Ab-Initio molecular-dynamics simulation of the liquid–metal amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  46. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  47. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  48. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  49. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  50. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  51. Michaelides, A. et al. Identification of general linear relationships between activation energies and enthalpy changes for dissociation reactions at surfaces. J. Am. Chem. Soc. 125, 3704–3705 (2003).

    Article  CAS  Google Scholar 

  52. Liu, Z. P. & Hu, P. General rules for predicting where a catalytic reaction should occur on metal surfaces: a density functional theory study of C–H and C–O bond breaking/making on flat, stepped, and kinked metal surfaces. J. Am. Chem. Soc. 125, 1958–1967 (2003).

    Article  CAS  Google Scholar 

  53. Alavi, A., Hu, P. J., Deutsch, T., Silvestrelli, P. L. & Hutter, J. CO oxidation on Pt(111): an ab initio density functional theory study. Phys. Rev. Lett. 80, 3650–3653 (1998).

    Article  CAS  Google Scholar 

  54. Rumble, J. R. CRC Handbook of Chemistry and Physics 99th edn, Section 5 (CRC Press, 2018).

  55. Speight, J. G. Lange’s Handbook of Chemistry 16th edn, Section 6 (McGraw-Hill Companies New York, 2005).

  56. Zheng, X. et al. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nat. Chem. 10, 149 (2018).

    Article  CAS  Google Scholar 

  57. Zhou, H. et al. Water splitting by electrolysis at high current density under 1.6 volt. Energy Environ. Sci. 11, 2858–2864 (2018).

    Article  CAS  Google Scholar 

Download references


This work was supported by the Ontario Research Fund Research-Excellence Program, the Natural Sciences and Engineering Research Council (NSERC) of Canada, the CIFAR Bio-Inspired Solar Energy programme, and the University of Toronto Connaught Program. This research used synchrotron resources of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by the Argonne National Laboratory, and was supported by the US DOE under contract no. DE-AC02-06CH11357, and the Canadian Light Source and its funding partners. The authors thank Z. Finfrock and M. J. Ward for technical support at the Sector 20BM beamline. D.S. acknowledges the NSERC E.W.R. Steacie Memorial Fellowship. J.L. acknowledges the Banting Postdoctoral Fellowships program. All DFT computations were performed on the IBM BlueGene/Q supercomputer with support from the Southern Ontario Smart Computing Innovation Platform (SOSCIP). SOSCIP is funded by the Federal Economic Development Agency of Southern Ontario, the Province of Ontario, IBM Canada, Ontario Centres of Excellence, Mitacs and 15 Ontario academic member institutions.

Author information

Authors and Affiliations



E.H.S. and D.S. supervised the project. Y.P. and J.L. designed the CORR experiments. Y.P., J.L., T.-T.Z., X.W. and Y.X. carried out the CORR experiments. P.D.L. assisted the catalyst preparation. J.L. carried out the operando XAS characterization. Z.W. performed the DFT calculations. C.-S.T., P.-L.H. and L.-J.C. carried out TEM imaging. Y.P., Y. L. and D.W. performed the TEM analysis. Y.P., J.L., Z.-Q.L, C.Z., J.P.E., C.-T.D., F.L. and M.Z. carried out the product detection via NMR and gas chromatography. Z.-Q.L. carried out the XRD characterization. All the authors discussed the results and assisted during manuscript preparation.

Corresponding authors

Correspondence to Edward H. Sargent or David Sinton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–42 and Supplementary Tables 1–2.

Supplementary Data 1

Data associated to Fig. 4.

Supplementary Data 2

Optimized geometry for the initial state of CO dimerization on copper interface model.

Supplementary Data 3

Optimized geometry for the final state of CO dimerization on copper interface model.

Supplementary Data 4

Optimized geometry for the transition state of CO dimerization on copper interface model.

Supplementary Data 5

Optimized geometry for the initial state of CO-OCCO coupling on copper interface model.

Supplementary Data 6

Optimized geometry for the final state of of CO-OCCO coupling on copper interface model.

Supplementary Data 7

Optimized geometry for the transition state of CO-OCCO coupling on copper interface model.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, Y., Li, J., Wang, Z. et al. Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper. Nat Catal 2, 251–258 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing