Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

The power and accessibility of high-throughput methods for catalysis research

Developing catalytic reactions for organic synthesis is the central goal of countless research groups worldwide. High-throughput experimentation is invaluable for this pursuit, with the requisite tools becoming increasingly available to both industrial and academic research labs.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: One-factor-at-a-time versus multivariate screening.
Fig. 2: Increasing sophistication in high-throughput experimentation for catalysis.

References

  1. Zhuo, C.-X. & Fürstner, A. J. Am. Chem. Soc. 140, 10514–10523 (2018).

    Article  CAS  Google Scholar 

  2. Troshin, K. & Hartwig, J. F. Science 357, 175–181 (2017).

    Article  CAS  Google Scholar 

  3. Koga, Y., Kaneda, T., Saito, Y., Murakami, K. & Itami, K. Science 359, 435–439 (2018).

    Article  CAS  Google Scholar 

  4. DiRocco, D. A. et al. Science 356, 426–430 (2017).

    Article  CAS  Google Scholar 

  5. Santanilla, A. B. et al. Science 347, 49–53 (2015).

    Article  Google Scholar 

  6. Perera, D. et al. Science 359, 429–434 (2018).

    Article  CAS  Google Scholar 

  7. Hendershot, R. J., Snively, C. M. & Lauterbach, J. Chem. Eur. J. 11, 806–814 (2005).

    Article  CAS  Google Scholar 

  8. Leitch, D. C. et al. Org. Process Res. Dev. 21, 1806–1814 (2017).

    Article  CAS  Google Scholar 

  9. Zeymer, C. & Hilvert, D. Annu. Rev. Biochem. 87, 131–157 (2018).

    Article  CAS  Google Scholar 

  10. Beller, M. & Wu, X.-F. Transition Metal Catalyzed Carbonylation Reactions (Springer-Verlag, Berlin, 2013).

    Book  Google Scholar 

  11. Martinelli, J. R., Watson, D. A., Freckmann, D. M. M., Barder, T. E. & Buchwald, S. L. J. Org. Chem. 73, 7102–7107 (2008).

    Article  CAS  Google Scholar 

  12. De Vries, J. G. & de Vries, A. H. M. Eur. J. Org. Chem. 2003, 799–811 (2003).

    Article  Google Scholar 

  13. Peil, K. P. et al. Macromol. Rapid Commun. 25, 119–126 (2004).

    Article  CAS  Google Scholar 

  14. Krska, S. W., DiRocco, D. A., Dreher, S. D. & Shevlin, M. Acc. Chem. Res. 50, 2976–2985 (2017).

    Article  CAS  Google Scholar 

  15. Shultz, C. S. & Krska, S. W. Acc. Chem. Res. 40, 1320–1326 (2007).

    Article  CAS  Google Scholar 

  16. Selekman, J. A. et al. Annu. Rev. Chem. Biomol. Eng. 8, 52–547 (2017).

    Article  Google Scholar 

  17. Welch, C. J. et al. Org. Process Res. Dev. 21, 414–419 (2017).

    Article  CAS  Google Scholar 

  18. Gesmundo, N. J. et al. Nature 557, 228–232 (2018).

    Article  CAS  Google Scholar 

  19. Richardson, J. et al. J. Org. Chem. 82, 3741–3750 (2017).

    Article  CAS  Google Scholar 

  20. McNally, A., Prier, C. K. & MacMillan, D. W. C. Science 334, 1114–1117 (2011).

    Article  CAS  Google Scholar 

  21. Monfette, S., Blacquiere, J. M. & Fogg, D. E. Organometallics 30, 36–42 (2011).

    Article  CAS  Google Scholar 

  22. Vandavasi, J. K. & Newman, S. G. Synlett 29, 2081–2086 (2018).

    Article  CAS  Google Scholar 

  23. Kuhn, K. M. et al. J. Am. Chem. Soc. 131, 5313–5320 (2009).

    Article  CAS  Google Scholar 

  24. Zhu, H. et al. Catal. Sci. Technol. 5, 4164–4173 (2015).

    Article  CAS  Google Scholar 

  25. Friedfeld, M. R. et al. Science 342, 1076–1080 (2013).

    Article  CAS  Google Scholar 

  26. Hansen, E. C. et al. Nat. Chem. 8, 1126–1130 (2016).

    Article  CAS  Google Scholar 

  27. Hie, L. et al. Angew. Chem. Int. Ed. 55, 15129–15132 (2016).

    Article  CAS  Google Scholar 

  28. Vantourout, J. C. et al. ACS Catal. 8, 9560–9566 (2018).

    Article  CAS  Google Scholar 

  29. Bahr, M. N. et al. Org. Process Res. Dev. 22, 1500–1508 (2018).

    Article  CAS  Google Scholar 

  30. Lin, S. et al. Science 361, eaar6236 (2018).

    Article  Google Scholar 

  31. Ahneman, D. T. et al. Science 360, 186–190 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew A. Zajac.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allen, C.L., Leitch, D.C., Anson, M.S. et al. The power and accessibility of high-throughput methods for catalysis research. Nat Catal 2, 2–4 (2019). https://doi.org/10.1038/s41929-018-0220-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-018-0220-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing