Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

SmI2-catalysed cyclization cascades by radical relay


Radical cyclization cascades are powerful tools used to construct the complex three-dimensional structures of some of society’s most prized molecules. Since its first use 40 years ago, SmI2 has been used extensively for reductive radical cyclizations. Unfortunately, SmI2 must almost always be used in significant excess, thus raising issues of cost and waste. Here, we have developed radical cyclization cascades that are catalysed by SmI2 and exploit a radical relay/electron-catalysis strategy. The approach negates the need for a super-stoichiometric co-reductant and requires no additives. Complex cyclic products, including products of dearomatization, containing up to four contiguous stereocentres are obtained in excellent yield. Mechanistic studies support a single-electron-transfer radical mechanism. Our strategy provides a long-awaited solution to the problem of how to avoid the need for stoichiometric amounts of SmI2 and establishes a conceptual platform on which other catalytic radical processes using the ubiquitous reducing agent can be built.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Importance of stoichiometric SmI2-mediated cyclizations and the challenge of catalysis using SmI2.
Fig. 2: Substrate scope for alkynes.
Fig. 3: Substrate scope for alkenes.
Fig. 4: SmI2-catalysed dearomatizing cyclization cascades.
Fig. 5: Preliminary mechanistic studies.
Fig. 6: Computational studies.

Data availability

Data relating to the materials and methods, optimization studies, experimental procedures, mechanistic studies, EPR spectra, NMR spectra and mass spectrometry are available in the Supplementary Information. Crystallographic data for compounds 2k, 2m, 2o, 4n, 4o, 6k and 6l are available free of charge from the Cambridge Crystallographic Data Centre under reference numbers CCDC 1866917–1866923. All other data are available from the authors upon reasonable request.


  1. Wender, P. A. & Miller, B. L. Synthesis at the molecular frontier. Nature 460, 197–201 (2009).

    Article  CAS  Google Scholar 

  2. Newhouse, T., Baran, P. S. & Hoffmann, R. W. The economies of synthesis. Chem. Soc. Rev. 38, 3010–3021 (2009).

    Article  CAS  Google Scholar 

  3. Nicolaou, K. C. & Chen, J. S. The art of total synthesis through cascade reactions. Chem. Soc. Rev. 38, 2993–3009 (2009).

    Article  CAS  Google Scholar 

  4. Walji, A. & MacMillan, D. Strategies to bypass the taxol problem. Enantioselective cascade catalysis, a new approach for the efficient construction of molecular complexity. Synlett 2007, 1477–1489 (2007).

    Article  Google Scholar 

  5. Yan, M., Lo, J. C., Edwards, J. T. & Baran, P. S. Radicals: reactive intermediates with translational potential. J. Am. Chem. Soc. 138, 12692–12714 (2016).

    Article  CAS  Google Scholar 

  6. Studer, A. & Curran, D. P. Catalysis of radical reactions: a radical chemistry perspective. Angew. Chem. Int. Ed. 55, 58–102 (2016).

    Article  CAS  Google Scholar 

  7. Hung, K., Hu, X. & Maimone, T. J. Total synthesis of complex terpenoids employing radical cascade processes. Nat. Prod. Rep. 35, 174–202 (2018).

    Article  CAS  Google Scholar 

  8. Kärkäs, M. D., Porco, J. A. & Stephenson, C. R. J. Photochemical approaches to complex chemotypes: applications in natural product synthesis. Chem. Rev. 116, 9683–9747 (2016).

    Article  Google Scholar 

  9. Ardkhean, R. et al. Cascade polycyclizations in natural product synthesis. Chem. Soc. Rev. 45, 1557–1569 (2016).

    Article  CAS  Google Scholar 

  10. Girard, P., Namy, J. L. & Kagan, H. B. Divalent lanthanide derivatives in organic synthesis. 1. Mild preparation of SmI2 and YbI2 and their use as reducing or coupling agents. J. Am. Chem. Soc. 102, 2693–2698 (1980).

    Article  CAS  Google Scholar 

  11. Szostak, M., Fazakerley, N. J., Parmar, D. & Procter, D. J. Cross-coupling reactions using samarium(ii) iodide. Chem. Rev. 114, 5959–6039 (2014).

    Article  CAS  Google Scholar 

  12. Molander, G. A. & Harris, C. R. Sequencing reactions with samarium(ii) iodide. Chem. Rev. 96, 307–338 (1996).

    Article  CAS  Google Scholar 

  13. Nicolaou, K. C., Ellery, S. P. & Chen, J. S. Samarium diiodide mediated reactions in total synthesis. Angew. Chem. Int. Ed. 48, 7140–7165 (2009).

    Article  CAS  Google Scholar 

  14. Edmonds, D. J., Johnston, D. & Procter, D. J. Samarium(ii)-iodide-mediated cyclizations in natural product synthesis. Chem. Rev. 104, 3371–3403 (2004).

    Article  CAS  Google Scholar 

  15. Mukaiyama, T. et al. Asymmetric total synthesis of taxol®. Chem. Eur. J. 5, 121–161 (1999).

    Article  CAS  Google Scholar 

  16. Cha, J. Y., Yeoman, J. T. S. & Reisman, S. E. A concise total synthesis of (−)-maoecrystal Z. J. Am. Chem. Soc. 133, 14964–14967 (2011).

    Article  CAS  Google Scholar 

  17. Beemelmanns, C. & Reissig, H.-U. A short formal total synthesis of strychnine with a samarium diiodide induced cascade reaction as the key step. Angew. Chem. Int. Ed. 49, 8021–8025 (2010).

    Article  CAS  Google Scholar 

  18. Fazakerley, N. J., Helm, M. D. & Procter, D. J. Total synthesis of (+)-pleuromutilin. Chem. Eur. J. 19, 6718–6723 (2013).

    Article  CAS  Google Scholar 

  19. Corey, E. J. & Zheng, G. Z. Catalytic reactions of samarium (ii) iodide. Tetrahedron Lett. 38, 2045–2048 (1997).

    Article  CAS  Google Scholar 

  20. Nomura, R., Matsuno, T. & Endo, T. Samarium iodide-catalyzed pinacol coupling of carbonyl compounds. J. Am. Chem. Soc. 118, 11666–11667 (1996).

    Article  CAS  Google Scholar 

  21. Hélion, F. & Namy, J.-L. Mischmetall: an efficient and low cost coreductant for catalytic reactions of samarium diiodide. J. Org. Chem. 64, 2944–2946 (1999).

    Article  Google Scholar 

  22. Zhang, Y. F. & Mellah, M. Convenient electrocatalytic synthesis of azobenzenes from nitroaromatic derivatives using SmI2. ACS Catal. 7, 8480–8486 (2017).

    Article  CAS  Google Scholar 

  23. Trost, B. The atom economy—a search for synthetic efficiency. Science 254, 1471–1477 (1991).

    Article  CAS  Google Scholar 

  24. Okada, Y. & Chiba, K. Redox-tag processes: intramolecular electron transfer and its broad relationship to redox reactions in general. Chem. Rev. 118, 4592–4630 (2018).

    Article  CAS  Google Scholar 

  25. Gansäuer, A., Hildebrandt, S., Vogelsang, E. & Flowers, R. A. II. Tuning the redox properties of the titanocene(iii)/(iv)-couple for atom-economical catalysis in single electron steps. Dalton Trans. 45, 448–452 (2016).

    Article  Google Scholar 

  26. Lu, Z., Shen, M. & Yoon, T. P. [3+2] cycloadditions of aryl cyclopropyl ketones by visible light photocatalysis. J. Am. Chem. Soc. 133, 1162–1164 (2011).

    Article  CAS  Google Scholar 

  27. Amador, A. G., Sherbrook, E. M. & Yoon, T. P. Enantioselective photocatalytic [3+2] cycloadditions of aryl cyclopropyl ketones. J. Am. Chem. Soc. 138, 4722–4725 (2016).

    Article  CAS  Google Scholar 

  28. Amador, A. G., Sherbrook, E. M., Lu, Z. & Yoon, T. P. A general protocol for radical anion [3+2] cycloaddition enabled by tandem Lewis acid photoredox catalysis. Synthesis 50, 539–547 (2018).

    Article  CAS  Google Scholar 

  29. Hao, W. et al. Radical redox-relay catalysis: formal [3+2] cycloaddition of N-acylaziridines and alkenes. J. Am. Chem. Soc. 139, 12141–12144 (2017).

    Article  CAS  Google Scholar 

  30. Hao, W., Harenberg, J. H., Wu, X., MacMillan, S. N. & Lin, S. Diastereo- and enantioselective formal [3+2] cycloaddition of cyclopropyl ketones and alkenes via Ti-catalyzed radical redox relay. J. Am. Chem. Soc. 140, 3514–3517 (2018).

    Article  CAS  Google Scholar 

  31. Huang, X. et al. Asymmetric [3+2] photocycloadditions of cyclopropanes with alkenes or alkynes through visible-light excitation of catalyst-bound substrates. Angew. Chem. Int. Ed. 57, 5454–5458 (2018).

    Article  CAS  Google Scholar 

  32. Molander, G. A. & Alonso-Alija, C. Opening of cyclopropyl ketones with SmI2. Synthesis of spirocyclic and bicyclic ketones by intramolecular trapping of an electrophile. Tetrahedron 53, 8067–8084 (1997).

    Article  CAS  Google Scholar 

  33. Luo, Z., Zhou, B. & Li, Y. Total synthesis of (−)-(α)-kainic acid via a diastereoselective intramolecular [3+2] cycloaddition reaction of an aryl cyclopropyl ketone with an alkyne. Org. Lett. 14, 2540–2543 (2012).

    Article  CAS  Google Scholar 

  34. Mainetti, E., Fensterbank, L. & Malacria, M. New elements in the reactivity of α-cyclopropyl vinyl radicals. Synlett 2002, 0923–0926 (2002).

    Article  Google Scholar 

  35. Pape, A. R., Kaliappan, K. P. & Kündig, E. P. Transition-metal-mediated dearomatization reactions. Chem. Rev. 100, 2917–2940 (2000).

    Article  CAS  Google Scholar 

  36. Roche, S. P. & Porco, J. A. Jr. Dearomatization strategies in the synthesis of complex natural products. Angew. Chem. Int. Ed. 50, 4068–4093 (2011).

    Article  CAS  Google Scholar 

  37. Zhuo, C. X. et al. Catalytic asymmetric dearomatization reactions. Angew. Chem. Int. Ed. 51, 12662–12686 (2012).

    Article  Google Scholar 

  38. Beemelmanns, C. & Reissig, H.-U. Samarium diiodide induced ketyl-(het)arene cyclisations towards novel N-heterocycles. Chem. Soc. Rev. 40, 2199–2210 (2011).

    Article  CAS  Google Scholar 

  39. Reissig, H.-U. & Zimmer, R. Donor−acceptor-substituted cyclopropane derivatives and their application in organic synthesis. Chem. Rev. 103, 1151–1196 (2003).

    Article  CAS  Google Scholar 

  40. Studer, A. & Curran, D. P. The electron is a catalyst. Nat. Chem. 6, 765–773 (2014).

    Article  CAS  Google Scholar 

Download references


We thank B. Wang, A. Baldansuren and D. Collison for assistance with the EPR studies. We gratefully acknowledge funding from the UK Engineering and Physical Sciences Research Council (Postdoctoral Fellowship EP/M005062/01 to H.-M.H. and an Established Career Fellowship to D.J.P.). We also acknowledge the Engineering and Physical Sciences Research Council UK National EPR Facility and Service at the University of Manchester (NS/A000055/1)

Author information

Authors and Affiliations



H.-M.H. and D.J.P. conceived and directed the project. H.-M.H. and D.J.P. designed the experiments. H.-M.H. performed and analysed all of the reactions. J.J.W.M. performed all of the computational studies. H.-M.H. and D.J.P. wrote the manuscript.

Corresponding author

Correspondence to David J. Procter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–23, Supplementary Tables 1–7, Supplementary References

Supplementary Data 1

Optimized structures corresponding to Supplementary Table 7

Compound 2k

Crystallographic data for compound 2k

Compound 2n

Crystallographic data for compound 2m

Compound 2o

Crystallographic data for compound 2o

Compound 4n

Crystallographic data for compound 4n

Compound 4o

Crystallographic data for compound 4o

Compound 6k

Crystallographic data for compound 6k

Compound 6l

Crystallographic data for compound 6l

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, HM., McDouall, J.J.W. & Procter, D.J. SmI2-catalysed cyclization cascades by radical relay. Nat Catal 2, 211–218 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing