Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Direct electrosynthesis of sodium hydroxide and hydrochloric acid from brine streams

A Publisher Correction to this article was published on 25 February 2019

This article has been updated

Abstract

Seawater is an abundant resource across the world, and its purification and by-product recovery methods are crucial for economical, environmentally safe and sustainable utilization. Desalinating seawater generally produces brine as a by-product that cannot be purified economically with current technologies and which is instead released to the environment. In this Perspective, we discuss direct electrosynthesis of sodium hydroxide (NaOH) and hydrochloric acid (HCl) from sea-water desalination brine as an emerging alternative solution. In this direct electrosynthesis (DE) process, the water splitting reaction is used to produce H+ and OH, which combine with the brine stream to produce NaOH and HCl. After introducing the scope of the process, we describe developments in earth-abundant catalysts for water splitting and the competing chlorine evolution reaction (CER), as well as challenges in inefficiency and productivity associated with these processes. Finally, we discuss the economic impact and feasibility of direct electrosynthesis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic drawings of electrodialysis systems.
Fig. 2: Scheme and activity of water splitting catalysts.
Fig. 3: Comparison of oxygen and chlorine selectivities for different ruthenia-based catalysts.
Fig. 4: Schematic illustration of different sources of brine for the DE-BMED process.

Change history

  • 25 February 2019

    In the version of this Perspective originally published, authors Amit Kumar and Katherine R. Phillips should have had a note in the affiliations indicating that they are equally contributing authors; this has now been corrected.

References

  1. 1.

    Roberts, D. A., Johnston, E. L. & Knott, N. A. Impacts of desalination plant discharges on the marine environment: a critical review of published studies. Water Res. 44, 5117–5128 (2010).

    CAS  PubMed  Google Scholar 

  2. 2.

    Ghaffour, N., Missimer, T. M. & Amy, G. L. Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability. Desalination 309, 197–207 (2013).

    CAS  Google Scholar 

  3. 3.

    Du, F., Warsinger, D. M., Urmi, T. I., Thiel, G. P., Kumar, A. & Lienhard, J. H. Sodium hydroxide production from seawater desalination brine: process design and energy efficiency. Environ. Sci. Technol. 52, 5949–5958 (2018).

    CAS  PubMed  Google Scholar 

  4. 4.

    Khedr, M. G. A case study of RO plant failure due to membrane fouling, analysis and diagnosis. Desalination 120, 107–113 (1998).

    CAS  Google Scholar 

  5. 5.

    Rahardianto, A., Gao, J., Gabelich, C. J., Williams, M. D. & Cohen, Y. High recovery membrane desalting of low-salinity brackish water: integration of accelerated precipitation softening with membrane RO. J. Membr. Sci. 289, 123–137 (2007).

    CAS  Google Scholar 

  6. 6.

    Pastor, M. R., Ruiz, A. F., Chillón, M. & Rico, D. P. Influence of pH in the elimination of boron by means of reverse osmosis. Desalination 140, 145–152 (2001).

    CAS  Google Scholar 

  7. 7.

    Milstead, C. E., Riedinger, A. B. & Lonsdale, H. K. Rejection of carbon dioxide and pH effects in reverse osmosis desalination. Desalination 9, 217–223 (1971).

    CAS  Google Scholar 

  8. 8.

    Ning, R. Y. Discussion of silica speciation, fouling, control and maximum reduction. Desalination 151, 67–73 (2003).

    CAS  Google Scholar 

  9. 9.

    Redondo, J. A. & Lomax, I. Experiences with the pretreatment of raw water with high fouling potential for reverse osmosis plant using FILMTEC membranes. Desalination 110, 167–182 (1997).

    CAS  Google Scholar 

  10. 10.

    Hydranautics Technical Service Bulletin. Nitto Denko http://www.lenntech.com/Data-sheets/tsb107-L.pdf (2011).

  11. 11.

    O’Brien, T. F., Bommaraju, T. V. & Hine, F. Handbook of Chlor-Alkali Technology (Springer US, New York, 2005).

  12. 12.

    Yang, Y., Gao, X., Fan, A., Fu, L. & Gao, C. An innovative beneficial reuse of seawater concentrate using bipolar membrane electrodialysis. J. Membr. Sci. 449, 119–126 (2014).

    CAS  Google Scholar 

  13. 13.

    Thiel, G. P., Kumar, A., Gómez-González, A. & Lienhard, J. H. Utilization of desalination brine for sodium hydroxide production: technologies, engineering principles, recovery limits, and future directions. ACS Sust. Chem. & Eng. 5, 11147–11162 (2017).

    CAS  Google Scholar 

  14. 14.

    Bagastyo, A. Y. et al. Electrochemical oxidation of reverse osmosis concentrate on boron-doped diamond anodes at circumneutral and acidic pH. Water Res. 46, 6104–6112 (2012).

    CAS  PubMed  Google Scholar 

  15. 15.

    Bergmann, M. E. H. & Koparal, A. S. Studies on electrochemical disinfectant production using anodes containing RuO2. J. Appl. Electrochem. 35, 1321–1329 (2005).

    CAS  Google Scholar 

  16. 16.

    Reig, M., Casas, S., Valderrama, C., Gibert, O. & Cortina, J. L. Integration of monopolar and bipolar electrodialysis for valorization of seawater reverse osmosis desalination brines: production of strong acid and base. Desalination 398, 87–97 (2016).

    CAS  Google Scholar 

  17. 17.

    Lin, H. W. et al. Direct anodic hydrochloric acid and cathodic caustic production during water electrolysis. Sci. Rep. 6, 20494 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    CAS  PubMed  Google Scholar 

  19. 19.

    Nocera, D. G. Solar fuels and solar chemicals industry. Acc. Chem. Res. 50, 616–619 (2017).

    CAS  PubMed  Google Scholar 

  20. 20.

    Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    CAS  PubMed  Google Scholar 

  21. 21.

    Karlsson, R. K. & Cornell, A. Selectivity between oxygen and chlorine Evolution in the chlor-alkali and chlorate processes. Chem. Rev. 116, 2982–3028 (2016).

    CAS  PubMed  Google Scholar 

  22. 22.

    Cheng, F. & Chen, J. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 41, 2172–2192 (2012).

    CAS  PubMed  Google Scholar 

  23. 23.

    Lee, J.-S. et al. Metal-air batteries with high energy density: Li–air versus Zn–air. Adv. Energy Mater 1, 34–50 (2011).

    CAS  Google Scholar 

  24. 24.

    Eftekhari, A. Electrocatalysts for hydrogen evolution reaction. Int. J. Hydrog. Energy 42, 11053–11077 (2017).

    CAS  Google Scholar 

  25. 25.

    Roger, I., Shipman, M. A. & Symes, M. D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nature Rev. Chem. 1, 0003 (2017).

    CAS  Google Scholar 

  26. 26.

    Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    PubMed  Google Scholar 

  27. 27.

    Trasatti, S. in Advances in Electrochemical Science and Engineering Vol. 2 (eds Gerischer, H. & Tobias, C. W) 1–85 (Wiley-VCH, Weinheim, 2008).

  28. 28.

    Zeng, M. & Li, Y. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 3, 14942–14962 (2015).

    CAS  Google Scholar 

  29. 29.

    Suen, N. T. et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46, 337–365 (2017).

    CAS  PubMed  Google Scholar 

  30. 30.

    Tahir, M. et al. Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review. Nano Energy 37, 136–157 (2017).

    CAS  Google Scholar 

  31. 31.

    Mahmood, J. et al. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol 12, 441–446 (2017).

    CAS  PubMed  Google Scholar 

  32. 32.

    Over, H. Surface chemistry of ruthenium dioxide in heterogeneous catalysis and electrocatalysis: from fundamental to applied research. Chem. Rev. 112, 3356–3426 (2012).

    CAS  PubMed  Google Scholar 

  33. 33.

    Kong, D., Cha, J. J., Wang, H., Lee, H. R. & Cui, Y. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy & Environ. Sci. 6, 3553–3558 (2013).

    CAS  Google Scholar 

  34. 34.

    McCrory, C. C. et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347–4357 (2015).

    CAS  PubMed  Google Scholar 

  35. 35.

    Danilovic, N. et al. Using surface segregation to design stable Ru-Ir oxides for the oxygen evolution reaction in acidic environments. Angew. Chem. Int. Ed. 53, 14016–14021 (2014).

    CAS  Google Scholar 

  36. 36.

    Montoya, J. H. et al. Materials for solar fuels and chemicals. Nat. Mater. 16, 70–81 (2016).

    PubMed  Google Scholar 

  37. 37.

    Shi, Y. & Zhang, B. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 45, 1529–1541 (2016).

    CAS  PubMed  Google Scholar 

  38. 38.

    Wang, H., Yuan, H., Sae Hong, S., Li, Y. & Cui, Y. Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem. Soc. Rev. 44, 2664–2680 (2015).

    CAS  PubMed  Google Scholar 

  39. 39.

    Fan, C. Study of electrodeposited nickel-molybdenum, nickel-tungsten, cobalt-molybdenum, and cobalt-tungsten as hydrogen electrodes in alkaline water electrolysis. J. Electrochem. Soc. 141, 382–387 (1994).

    CAS  Google Scholar 

  40. 40.

    McKone, J. R., Sadtler, B. F., Werlang, C. A., Lewis, N. S. & Gray, H. B. Ni–Mo nanopowders for efficient electrochemical hydrogen evolution. ACS Catal 3, 166–169 (2013).

    CAS  Google Scholar 

  41. 41.

    Raj, I. A. & Vasu, K. I. Transition metal-based hydrogen electrodes in alkaline solution: electrocatalysis on nickel based binary alloy coatings. J. Appl. Electrochem. 20, 32–38 (1990).

    CAS  Google Scholar 

  42. 42.

    Wang, Y. et al. A 3D nanoporous Ni–Mo electrocatalyst with negligible overpotential for alkaline hydrogen evolution. ChemElectroChem 1, 1138–1144 (2014).

    CAS  Google Scholar 

  43. 43.

    Bhowmik, T., Kundu, M. K. & Barman, S. Growth of one-dimensional RuO2 nanowires on g-carbon nitride: an active and stable bifunctional electrocatalyst for hydrogen and oxygen evolution reactions at all pH values. ACS Appl. Mater. Interfaces 8, 28678–28688 (2016).

    CAS  PubMed  Google Scholar 

  44. 44.

    Greeley, J. Theoretical heterogeneous catalysis: scaling relationships and computational catalyst design. Annu. Rev. Chem. Biomol. Eng. 7, 605–635 (2016).

    PubMed  Google Scholar 

  45. 45.

    Meng, Y. et al. Structure−property relationship of bifunctional MnO2 nanostructures: highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media. J. Amer. Chem Soc. 136, 11452–11464 (2014).

    CAS  Google Scholar 

  46. 46.

    Hong, W. T. et al. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy & Environ. Sci. 8, 1404–1427 (2015).

    CAS  Google Scholar 

  47. 47.

    Kanan, M. W., Surendranath, Y. & Nocera, D. G. Cobalt-phosphate oxygen-evolving compound. Chem. Soc. Rev. 38, 109–114 (2009).

    CAS  PubMed  Google Scholar 

  48. 48.

    Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011).

    CAS  Google Scholar 

  49. 49.

    Subbaraman, R. et al. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11, 550–557 (2012).

    CAS  PubMed  Google Scholar 

  50. 50.

    Vojvodic, A. & Nørskov, J. K. New design paradigm for heterogeneous catalysts. Natl. Sci. Rev. 2, 140–149 (2015).

    CAS  Google Scholar 

  51. 51.

    Zhang, B. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352, 333–337 (2016).

    CAS  PubMed  Google Scholar 

  52. 52.

    Seitz, L. C. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353, 1011–1014 (2016).

    CAS  PubMed  Google Scholar 

  53. 53.

    Chen, W. et al. In situ electrochemical oxidation tuning of transition metal disulfides to oxides for enhanced water oxidation. ACS Cent. Sci 1, 244–251 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Wang, H. et al. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall waters. Nat. Commun. 6, 7261 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Danilovic, N. et al. Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments. J. Phys. Chem. Lett. 5, 2474–2478 (2014).

    CAS  PubMed  Google Scholar 

  56. 56.

    DeSario, P. A., Chervin, C. N., Nelson, E. S., Sassin, M. B. & Rolison, D. R. Competitive oxygen evolution in acid electrolyte catalyzed at technologically relevant electrodes painted with nanoscale RuO2. ACS Appl. Mater. Interfaces 9, 2387–2395 (2017).

    CAS  PubMed  Google Scholar 

  57. 57.

    Chung, C. M., Hong, S. W., Cho, K. & Hoffmann, M. R. Degradation of organic compounds in wastewater matrix by electrochemically generated reactive chlorine species: kinetics and selectivity. Catal. Today 313, 189–195 (2018).

    CAS  Google Scholar 

  58. 58.

    Cho, K. et al. Effects of anodic potential and chloride ion on overall reactivity in electrochemical reactors designed for solar-powered wastewater treatment. Environ. Sci. Technol. 48, 2377–2384 (2014).

    CAS  PubMed  Google Scholar 

  59. 59.

    Park, H., Vecitis, C. D. & Hoffmann, M. R. Electrochemical water splitting coupled with organic compound oxidation: the role of active chlorine species. J. Phys. Chem. C 113, 7935–7945 (2009).

    CAS  Google Scholar 

  60. 60.

    Dionigi, F., Reier, T., Pawolek, Z., Gliech, M. & Strasser, P. Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis. ChemSusChem 9, 962–972 (2016).

    CAS  PubMed  Google Scholar 

  61. 61.

    Fujimura, K. et al. Anodically deposited manganese-molybdenum oxide anodes with high selectivity for evolving oxygen in electrolysis of seawater. J. Appl. Electrochem 29, 769–775 (1999).

    Google Scholar 

  62. 62.

    Kato, Z. et al. Electrochemical characterization of degradation of oxygen evolution anode for Seawater Electrolysis. Electrochim. Acta 116, 15–157 (2014).

    Google Scholar 

  63. 63.

    Trasatti, S. Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochim. Acta 29, 1503–1512 (1984).

    CAS  Google Scholar 

  64. 64.

    Nikolić, B. Ž. & Panić, V. in Encyclopedia of Applied Electrochemistry (eds Kreysa, G., Ota, K. -i. & Savinell, R. F) 411–417 (Springer-Verlag, New York, 2014).

  65. 65.

    Hansen, H. A. et al. Electrochemical chlorine evolution at rutile oxide (110) surfaces. Phys. Chem. Chem. Phys. 12, 283–290 (2010).

    CAS  PubMed  Google Scholar 

  66. 66.

    Barmashenko, V. & Jörissen, J. Recovery of chlorine from dilute hydrochloric acid by electrolysis using a chlorine resistant anion exchange membrane. J. Appl. Electrochem. 35, 1311–1319 (2005).

    CAS  Google Scholar 

  67. 67.

    Kuznetsova, E., Petrykin, V., Sunde, S. & Krtil, P. Selectivity of nanocrystalline IrO2-based catalysts in parallel chlorine and oxygen Evolution. Electrocatalysis 6, 198–210 (2014).

    Google Scholar 

  68. 68.

    Petrykin, V., Macounová, K., Okube, M., Mukerjee, S. & Krtil, P. Local structure of Co doped RuO2 nanocrystalline electrocatalytic materials for chlorine and oxygen evolution. Catal. Today 202, 63–69 (2013).

    CAS  Google Scholar 

  69. 69.

    Mavrov, V., Chmiel, H., Heitele, B. & Rögener, F. Desalination of surface water to industrial water with lower impact on the environment. Desalination 124, 205–216 (1999).

    CAS  Google Scholar 

  70. 70.

    Petrykin, V., Macounova, K., Shlyakhtin, O. A. & Krtil, P. Tailoring the selectivity for electrocatalytic oxygen evolution on ruthenium oxides by zinc substitution. Angew. Chem. Int. Ed. 49, 4813–4815 (2010).

    CAS  Google Scholar 

  71. 71.

    Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651–659 (2018).

    CAS  PubMed  Google Scholar 

  72. 72.

    IDA Desalination Yearbook (The International Desalination Association, 2015).

  73. 73.

    Chung, H. W., Nayar, K. G., Swaminathan, J., Chehayeb, K. M. & Lienhard, J. H. Thermodynamic analysis of brine management methods: zero-discharge desalination and salinity-gradient power production. Desalination 404, 291–303 (2017).

    CAS  Google Scholar 

  74. 74.

    Global chlor-alkali market: trends analysis & forecasts to 2021. Business Wire https://www.researchandmarkets.com/research/lwwgnn/global (2017).

  75. 75.

    Sedivy, V. M. (ed.) Economy of Salt in Chloralkali Manufacture (National Salt Conference, 2008).

  76. 76.

    El-Manharawy, S. & Hafez, A. Study of seawater alkalization as a promising RO pretreatment method. Desalination 153, 109–120 (2003).

    CAS  Google Scholar 

  77. 77.

    Barron, O. et al. Feasibility assessment of desalination application in australian traditional agriculture. Desalination 364, 33–45 (2015).

    CAS  Google Scholar 

  78. 78.

    Burn, S. et al. Desalination techniques—a review of the opportunities for desalination in agriculture. Desalination 364, 2–16 (2015).

    CAS  Google Scholar 

  79. 79.

    Yermiyahu, U. et al. Environmental science: rethinking desalinated water quality and agriculture. Science 318, 920–921 (2007).

    CAS  PubMed  Google Scholar 

  80. 80.

    Zarzo, D., Campos, E. & Terrero, P. Spanish experience in desalination for agriculture. Desalin. Water Treat 51, 53–66 (2013).

    CAS  Google Scholar 

  81. 81.

    Nable, R. O., Bañuelos, G. S. & Paull, J. G. Boron toxicity. Plant and Soil 193, 181–198 (1997).

    CAS  Google Scholar 

  82. 82.

    Bartlett, R. W. Solution Mining: Leaching and Fluid Recovery of Materials 2nd edn (Gordon and Breach Science Publishers, Philidephia, 1998).

  83. 83.

    Turek, M. Electrodialytic desalination and concentration of coal-mine brine. Desalination 162, 355–359 (2004).

    CAS  Google Scholar 

  84. 84.

    Thiel, G. P., Tow, E. W., Banchik, L. D., Chung, H. W. & Lienhard, J. H. Energy consumption in desalinating produced water from shale oil and gas extraction. Desalination 366, 94–112 (2015).

    CAS  Google Scholar 

  85. 85.

    Mohsen, M. S. Treatment and reuse of industrial effluents: case study of a thermal power plant. Desalination 167, 75–86 (2004).

    CAS  Google Scholar 

  86. 86.

    Rau, G. H. et al. Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 production. Proc. Natl Acad. Sci. USA 110, 10095–10100 (2013).

    CAS  PubMed  Google Scholar 

  87. 87.

    Badruzzaman, M., Oppenheimer, J., Adham, S. & Kumar, M. Innovative beneficial reuse of reverse osmosis concentrate using bipolar membrane electrodialysis and electrochlorination processes. J. Membr. Sci. 326, 392–399 (2009).

    CAS  Google Scholar 

  88. 88.

    Ibáñez, R., Pérez-González, A., Gómez, P., Urtiaga, A. M. & Ortiz, I. Acid and base recovery from softened reverse osmosis (RO) brines. Experimental assessment using model concentrates. Desalination 309, 165–170 (2013).

    Google Scholar 

  89. 89.

    Wang, M., Wang, K.-K., Jia, Y.-X. & Ren, Q.-C. The reclamation of brine generated from desalination process by bipolar membrane electrodialysis. J. Membr. Sci. 452, 54–61 (2014).

    CAS  Google Scholar 

  90. 90.

    Davis, J. R., Chen, Y., Baygents, J. C. & Farrell, J. Production of acids and bases for ion exchange regeneration from dilute salt solutions using bipolar membrane electrodialysis. ACS Sustain. Chem. Eng. 3, 2337–2342 (2015).

    CAS  Google Scholar 

  91. 91.

    Reig, M. et al. Integration of nanofiltration and bipolar electrodialysis for valorization of seawater desalination brines: production of drinking and waste water treatment chemicals. Desalination. 382, 13–20 (2016).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Cadagua, a Ferrovial subsidiary, through the MIT Energy Initiative. The authors would like to thank G. Han for contributing to Fig. 4, K.G. Nayar for input on the ‘Economic potential’ section, and J. Cai for assistance on the overall research program.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Amit Kumar or John H. Lienhard V.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Phillips, K.R., Thiel, G.P. et al. Direct electrosynthesis of sodium hydroxide and hydrochloric acid from brine streams. Nat Catal 2, 106–113 (2019). https://doi.org/10.1038/s41929-018-0218-y

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing