Comment | Published:

Challenges and outlook for catalytic direct amidation reactions

Nature Catalysisvolume 2pages98102 (2019) | Download Citation

Establishing an efficient catalytic system for direct amidation reactions has remained a formidable challenge for years. This Comment will focus on potential new directions in the hope of moving this field forward.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Pattabiraman, V. R. & Bode, J. W. Nature 480, 471–479 (2011).

  2. 2.

    Joullié, M. M. & Lassen, K. M. Arkivoc 8, 189–250 (2010).

  3. 3.

    Lundberg, H., Tinnis, F., Selander, N. & Adolfsson, H. Chem. Soc. Rev. 43, 2714–2742 (2014).

  4. 4.

    Constable, D. J. C. et al. Green Chem. 9, 411–420 (2007).

  5. 5.

    de Figueiredo, R. M., Suppo, J.-S. & Campagne, J.-M. Chem. Rev. 116, 12029–12122 (2016).

  6. 6.

    Porras, A. O. & Sánchez, D. G. J. Org. Chem. 81, 11548–11555 (2016).

  7. 7.

    El-Faham, A. & Albericio, F. Chem. Rev. 111, 6557–6602 (2011).

  8. 8.

    Dunetz, J. R., Magano, J. & Weisenburger, G. A. Org. Process Res. Dev. 20, 140–177 (2016).

  9. 9.

    Charville, H., Jackson, D., Hodges, G. & Whiting, A. Chem. Commun. 46, 1813–23 (2010).

  10. 10.

    Arnold, K. et al. Adv. Synth. Catal. 348, 813–820 (2006).

  11. 11.

    Georgiou, I., Ilyashenko, G. & Whiting, A. Acc. Chem. Res. 42, 756–768 (2009).

  12. 12.

    Stephan, D. W. Science 354, 1248–1256 (2016).

  13. 13.

    Arkhipenko, S. & Whiting, A. Arkivoc http://doi.org/czj3 (2017).

  14. 14.

    DiRocco, D. A. et al. Science 356, 426–430 (2017).

  15. 15.

    Fang, X. & Wang, C. J. Chem. Commun. 51, 1185–1197 (2015).

  16. 16.

    Hoang, L. T. M. et al. Chem. Commun. 51, 17132–17135 (2015).

  17. 17.

    Nath, I., Chakraborty, J. & Verpoort, F. Chem. Soc. Rev. 45, 4127–4170 (2016).

  18. 18.

    Li, B. et al. Sci. Rep. 4, 6759 (2014).

  19. 19.

    Morihara, K. Trends Biotechnol. 5, 164–170 (1987).

  20. 20.

    Rich, A. in Chemical Evolution and the Origin of Life (eds Buvet, R. & Ponnamperuma, C.) 180–196 (Elsevier, Amsterdam, 1971).

  21. 21.

    Forsythe, J. G. et al. Angew. Chem. Int. Ed. 54, 9871–9875 (2015).

  22. 22.

    Baek, H., Minakawa, M., Yamada, Y. M. A., Han, J. W. & Uozumi, Y. Sci. Rep. 6, 25925 (2016).

  23. 23.

    Hie, L. et al. Angew. Chem. Int. Ed. 55, 2810–2814 (2016).

  24. 24.

    Halima, T. B., Vandavasi, J. K., Shkoor, M. & Newman, S. G. ACS Catal. 7, 2176–2180 (2017).

  25. 25.

    Singh, M. S., Nagaraju, A., Anand, N. & Chowdhury, S. RSC Adv. 4, 55924–55959 (2014).

  26. 26.

    Modica, E., Zanaletti, R., Freccero, M. & Mella, M. J. Org. Chem. 66, 41–52 (2001).

  27. 27.

    Arumugam, S. & Popik, V. V. J. Am. Chem. Soc. 134, 8408–8411 (2012).

  28. 28.

    Bernal, J. D. Proc. Phys. Soc. A 62, 537–558 (1949).

  29. 29.

    Cleaves, H. J. II et al. Chem. Soc. Rev. 41, 5502–5525 (2012).

  30. 30.

    Erastova, V., Degiacomi, M. T., Fraser, D. G. & Greenwell, H. C. Nat. Commun. 8, 2033 (2017).

  31. 31.

    Huber, C. & Wächtershäuser, G. Science 281, 670–672 (1998).

  32. 32.

    Jakschitz, T. A. E. & Rode, B. M. Chem. Soc. Rev. 41, 5484–5489 (2012).

  33. 33.

    Griffith, E. C. & Vaida, V. Proc. Natl. Acad. Sci. 109, 15697–15701 (2012).

  34. 34.

    Danger, G., Plasson, R. & Pascal, R. Chem. Soc. Rev. 41, 5416–5429 (2012).

  35. 35.

    Kricheldorf, H. R. Angew. Chem. Int. Ed. 45, 5752–5784 (2006).

  36. 36.

    Ishihara, K., Ohara, S. & Yamamoto, H. Macromolecules 33, 3511–3513 (2000).

  37. 37.

    Izgu, E. C. et al. J. Am. Chem. Soc. 138, 16669–16676 (2016).

  38. 38.

    Maiatska, O., Belkin, A. & Ritter, H. Macromolecules 48, 2367–2369 (2015).

  39. 39.

    Nishida, S., Shio, H. & Goto, K. Preparation of amino acid N-​carboxylic acid anhydrides. Japanese Patent 11029560 (1999).

  40. 40.

    Chen, F.-F. et al. Angew. Chem. Int. Ed. 55, 7166–7170 (2016).

  41. 41.

    He, N.-Y., Woo, C.-S., Kim, H.-G. & Lee, H.-I. App. Catal. A 281, 167–178 (2005).

  42. 42.

    Robert, C., de Montigny, F. & Thomas, C. M. ACS Catal. 4, 3586–3589 (2014).

  43. 43.

    McCallum, T. & Barriault, L. J. Org. Chem. 80, 2874–2878 (2015).

  44. 44.

    Schwieter, K. E. & Johnston, J. N. J. Am. Chem. Soc. 138, 14160–14169 (2016).

  45. 45.

    Dioumaev, V. K. & Bullock, R. M. Nature 424, 530–532 (2003).

  46. 46.

    Lu, Y.-H., Wang, K. & Ishihara, K. Asian J. Org. Chem. 6, 1191–1194 (2017).

  47. 47.

    Cortes-Clerget, M., Berthon, J.-Y., Krolikiewicz-Renimel, I., Chaisemartin, L. & Lipshutz, B. H. Green Chem. 19, 4263–4267 (2017).

  48. 48.

    Donner, A., Hagedorn, K., Mattes, L., Drechsler, M. & Polarz, S. Chem. Eur. J. 23, 18129–18133 (2017).

  49. 49.

    Hojo, K., Ichikawa, K., Onishi, M., Fukumori, Y. & Kawasaki, K. J. Pept. Sci. 17, 487–492 (2011).

  50. 50.

    Fuse, S., Mifune, Y., Nakamura, H. & Tanaka, H. Nat. Commun. 7, 13491 (2016).

  51. 51.

    Morschhäuser, R. et al. Green Process Synth. 1, 281–290 (2012).

Download references

Author information

Affiliations

  1. School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China

    • Xiao Wang

Authors

  1. Search for Xiao Wang in:

Corresponding author

Correspondence to Xiao Wang.

About this article

Publication history

Published

Issue Date

DOI

https://doi.org/10.1038/s41929-018-0215-1

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing