Establishing an efficient catalytic system for direct amidation reactions has remained a formidable challenge for years. This Comment will focus on potential new directions in the hope of moving this field forward.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Enantioselective synthesis of chiral amides by carbene insertion into amide N–H bond
Nature Communications Open Access 05 June 2024
-
Streamlining the synthesis of amides using Nickel-based nanocatalysts
Nature Communications Open Access 17 August 2023
-
A diselenobis-functionalized magnetic catalyst based on iron oxide/silica nanoparticles suggested for amidation reactions
Scientific Reports Open Access 01 September 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
References
Pattabiraman, V. R. & Bode, J. W. Nature 480, 471–479 (2011).
Joullié, M. M. & Lassen, K. M. Arkivoc 8, 189–250 (2010).
Lundberg, H., Tinnis, F., Selander, N. & Adolfsson, H. Chem. Soc. Rev. 43, 2714–2742 (2014).
Constable, D. J. C. et al. Green Chem. 9, 411–420 (2007).
de Figueiredo, R. M., Suppo, J.-S. & Campagne, J.-M. Chem. Rev. 116, 12029–12122 (2016).
Porras, A. O. & Sánchez, D. G. J. Org. Chem. 81, 11548–11555 (2016).
El-Faham, A. & Albericio, F. Chem. Rev. 111, 6557–6602 (2011).
Dunetz, J. R., Magano, J. & Weisenburger, G. A. Org. Process Res. Dev. 20, 140–177 (2016).
Charville, H., Jackson, D., Hodges, G. & Whiting, A. Chem. Commun. 46, 1813–23 (2010).
Arnold, K. et al. Adv. Synth. Catal. 348, 813–820 (2006).
Georgiou, I., Ilyashenko, G. & Whiting, A. Acc. Chem. Res. 42, 756–768 (2009).
Stephan, D. W. Science 354, 1248–1256 (2016).
Arkhipenko, S. & Whiting, A. Arkivoc http://doi.org/czj3 (2017).
DiRocco, D. A. et al. Science 356, 426–430 (2017).
Fang, X. & Wang, C. J. Chem. Commun. 51, 1185–1197 (2015).
Hoang, L. T. M. et al. Chem. Commun. 51, 17132–17135 (2015).
Nath, I., Chakraborty, J. & Verpoort, F. Chem. Soc. Rev. 45, 4127–4170 (2016).
Li, B. et al. Sci. Rep. 4, 6759 (2014).
Morihara, K. Trends Biotechnol. 5, 164–170 (1987).
Rich, A. in Chemical Evolution and the Origin of Life (eds Buvet, R. & Ponnamperuma, C.) 180–196 (Elsevier, Amsterdam, 1971).
Forsythe, J. G. et al. Angew. Chem. Int. Ed. 54, 9871–9875 (2015).
Baek, H., Minakawa, M., Yamada, Y. M. A., Han, J. W. & Uozumi, Y. Sci. Rep. 6, 25925 (2016).
Hie, L. et al. Angew. Chem. Int. Ed. 55, 2810–2814 (2016).
Halima, T. B., Vandavasi, J. K., Shkoor, M. & Newman, S. G. ACS Catal. 7, 2176–2180 (2017).
Singh, M. S., Nagaraju, A., Anand, N. & Chowdhury, S. RSC Adv. 4, 55924–55959 (2014).
Modica, E., Zanaletti, R., Freccero, M. & Mella, M. J. Org. Chem. 66, 41–52 (2001).
Arumugam, S. & Popik, V. V. J. Am. Chem. Soc. 134, 8408–8411 (2012).
Bernal, J. D. Proc. Phys. Soc. A 62, 537–558 (1949).
Cleaves, H. J. II et al. Chem. Soc. Rev. 41, 5502–5525 (2012).
Erastova, V., Degiacomi, M. T., Fraser, D. G. & Greenwell, H. C. Nat. Commun. 8, 2033 (2017).
Huber, C. & Wächtershäuser, G. Science 281, 670–672 (1998).
Jakschitz, T. A. E. & Rode, B. M. Chem. Soc. Rev. 41, 5484–5489 (2012).
Griffith, E. C. & Vaida, V. Proc. Natl. Acad. Sci. 109, 15697–15701 (2012).
Danger, G., Plasson, R. & Pascal, R. Chem. Soc. Rev. 41, 5416–5429 (2012).
Kricheldorf, H. R. Angew. Chem. Int. Ed. 45, 5752–5784 (2006).
Ishihara, K., Ohara, S. & Yamamoto, H. Macromolecules 33, 3511–3513 (2000).
Izgu, E. C. et al. J. Am. Chem. Soc. 138, 16669–16676 (2016).
Maiatska, O., Belkin, A. & Ritter, H. Macromolecules 48, 2367–2369 (2015).
Nishida, S., Shio, H. & Goto, K. Preparation of amino acid N-carboxylic acid anhydrides. Japanese Patent 11029560 (1999).
Chen, F.-F. et al. Angew. Chem. Int. Ed. 55, 7166–7170 (2016).
He, N.-Y., Woo, C.-S., Kim, H.-G. & Lee, H.-I. App. Catal. A 281, 167–178 (2005).
Robert, C., de Montigny, F. & Thomas, C. M. ACS Catal. 4, 3586–3589 (2014).
McCallum, T. & Barriault, L. J. Org. Chem. 80, 2874–2878 (2015).
Schwieter, K. E. & Johnston, J. N. J. Am. Chem. Soc. 138, 14160–14169 (2016).
Dioumaev, V. K. & Bullock, R. M. Nature 424, 530–532 (2003).
Lu, Y.-H., Wang, K. & Ishihara, K. Asian J. Org. Chem. 6, 1191–1194 (2017).
Cortes-Clerget, M., Berthon, J.-Y., Krolikiewicz-Renimel, I., Chaisemartin, L. & Lipshutz, B. H. Green Chem. 19, 4263–4267 (2017).
Donner, A., Hagedorn, K., Mattes, L., Drechsler, M. & Polarz, S. Chem. Eur. J. 23, 18129–18133 (2017).
Hojo, K., Ichikawa, K., Onishi, M., Fukumori, Y. & Kawasaki, K. J. Pept. Sci. 17, 487–492 (2011).
Fuse, S., Mifune, Y., Nakamura, H. & Tanaka, H. Nat. Commun. 7, 13491 (2016).
Morschhäuser, R. et al. Green Process Synth. 1, 281–290 (2012).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, X. Challenges and outlook for catalytic direct amidation reactions. Nat Catal 2, 98–102 (2019). https://doi.org/10.1038/s41929-018-0215-1
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41929-018-0215-1
This article is cited by
-
Enantioselective synthesis of chiral amides by carbene insertion into amide N–H bond
Nature Communications (2024)
-
Streamlining the synthesis of amides using Nickel-based nanocatalysts
Nature Communications (2023)
-
Crosslinking Methods in Polysaccharide-Based Hydrogels for Drug Delivery Systems
Biomedical Materials & Devices (2023)
-
Defect engineering of electrocatalysts for organic synthesis
Nano Research (2023)
-
A diselenobis-functionalized magnetic catalyst based on iron oxide/silica nanoparticles suggested for amidation reactions
Scientific Reports (2022)