Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Challenges and outlook for catalytic direct amidation reactions

Establishing an efficient catalytic system for direct amidation reactions has remained a formidable challenge for years. This Comment will focus on potential new directions in the hope of moving this field forward.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Potential bifunctional catalytic models and the ester-mediated amidation.
Fig. 2: A potential catalytic system using a regenerable coupling reagent.
Fig. 3: Possible new directions in catalytic direct amidation.

References

  1. Pattabiraman, V. R. & Bode, J. W. Nature 480, 471–479 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Joullié, M. M. & Lassen, K. M. Arkivoc 8, 189–250 (2010).

    Google Scholar 

  3. Lundberg, H., Tinnis, F., Selander, N. & Adolfsson, H. Chem. Soc. Rev. 43, 2714–2742 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Constable, D. J. C. et al. Green Chem. 9, 411–420 (2007).

    Article  CAS  Google Scholar 

  5. de Figueiredo, R. M., Suppo, J.-S. & Campagne, J.-M. Chem. Rev. 116, 12029–12122 (2016).

    Article  PubMed  Google Scholar 

  6. Porras, A. O. & Sánchez, D. G. J. Org. Chem. 81, 11548–11555 (2016).

    Article  Google Scholar 

  7. El-Faham, A. & Albericio, F. Chem. Rev. 111, 6557–6602 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Dunetz, J. R., Magano, J. & Weisenburger, G. A. Org. Process Res. Dev. 20, 140–177 (2016).

    Article  CAS  Google Scholar 

  9. Charville, H., Jackson, D., Hodges, G. & Whiting, A. Chem. Commun. 46, 1813–23 (2010).

    Article  CAS  Google Scholar 

  10. Arnold, K. et al. Adv. Synth. Catal. 348, 813–820 (2006).

    Article  CAS  Google Scholar 

  11. Georgiou, I., Ilyashenko, G. & Whiting, A. Acc. Chem. Res. 42, 756–768 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Stephan, D. W. Science 354, 1248–1256 (2016).

    Article  CAS  Google Scholar 

  13. Arkhipenko, S. & Whiting, A. Arkivoc http://doi.org/czj3 (2017).

  14. DiRocco, D. A. et al. Science 356, 426–430 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Fang, X. & Wang, C. J. Chem. Commun. 51, 1185–1197 (2015).

    Article  CAS  Google Scholar 

  16. Hoang, L. T. M. et al. Chem. Commun. 51, 17132–17135 (2015).

    Article  CAS  Google Scholar 

  17. Nath, I., Chakraborty, J. & Verpoort, F. Chem. Soc. Rev. 45, 4127–4170 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Li, B. et al. Sci. Rep. 4, 6759 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Morihara, K. Trends Biotechnol. 5, 164–170 (1987).

    Article  CAS  Google Scholar 

  20. Rich, A. in Chemical Evolution and the Origin of Life (eds Buvet, R. & Ponnamperuma, C.) 180–196 (Elsevier, Amsterdam, 1971).

  21. Forsythe, J. G. et al. Angew. Chem. Int. Ed. 54, 9871–9875 (2015).

    Article  CAS  Google Scholar 

  22. Baek, H., Minakawa, M., Yamada, Y. M. A., Han, J. W. & Uozumi, Y. Sci. Rep. 6, 25925 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hie, L. et al. Angew. Chem. Int. Ed. 55, 2810–2814 (2016).

    Article  CAS  Google Scholar 

  24. Halima, T. B., Vandavasi, J. K., Shkoor, M. & Newman, S. G. ACS Catal. 7, 2176–2180 (2017).

    Article  Google Scholar 

  25. Singh, M. S., Nagaraju, A., Anand, N. & Chowdhury, S. RSC Adv. 4, 55924–55959 (2014).

    Article  CAS  Google Scholar 

  26. Modica, E., Zanaletti, R., Freccero, M. & Mella, M. J. Org. Chem. 66, 41–52 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Arumugam, S. & Popik, V. V. J. Am. Chem. Soc. 134, 8408–8411 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Bernal, J. D. Proc. Phys. Soc. A 62, 537–558 (1949).

    Article  Google Scholar 

  29. Cleaves, H. J. II et al. Chem. Soc. Rev. 41, 5502–5525 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Erastova, V., Degiacomi, M. T., Fraser, D. G. & Greenwell, H. C. Nat. Commun. 8, 2033 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Huber, C. & Wächtershäuser, G. Science 281, 670–672 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Jakschitz, T. A. E. & Rode, B. M. Chem. Soc. Rev. 41, 5484–5489 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Griffith, E. C. & Vaida, V. Proc. Natl. Acad. Sci. 109, 15697–15701 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Danger, G., Plasson, R. & Pascal, R. Chem. Soc. Rev. 41, 5416–5429 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Kricheldorf, H. R. Angew. Chem. Int. Ed. 45, 5752–5784 (2006).

    Article  CAS  Google Scholar 

  36. Ishihara, K., Ohara, S. & Yamamoto, H. Macromolecules 33, 3511–3513 (2000).

    Article  CAS  Google Scholar 

  37. Izgu, E. C. et al. J. Am. Chem. Soc. 138, 16669–16676 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Maiatska, O., Belkin, A. & Ritter, H. Macromolecules 48, 2367–2369 (2015).

    Article  CAS  Google Scholar 

  39. Nishida, S., Shio, H. & Goto, K. Preparation of amino acid N-​carboxylic acid anhydrides. Japanese Patent 11029560 (1999).

  40. Chen, F.-F. et al. Angew. Chem. Int. Ed. 55, 7166–7170 (2016).

    Article  CAS  Google Scholar 

  41. He, N.-Y., Woo, C.-S., Kim, H.-G. & Lee, H.-I. App. Catal. A 281, 167–178 (2005).

    Article  CAS  Google Scholar 

  42. Robert, C., de Montigny, F. & Thomas, C. M. ACS Catal. 4, 3586–3589 (2014).

    Article  CAS  Google Scholar 

  43. McCallum, T. & Barriault, L. J. Org. Chem. 80, 2874–2878 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Schwieter, K. E. & Johnston, J. N. J. Am. Chem. Soc. 138, 14160–14169 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Dioumaev, V. K. & Bullock, R. M. Nature 424, 530–532 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Lu, Y.-H., Wang, K. & Ishihara, K. Asian J. Org. Chem. 6, 1191–1194 (2017).

    Article  CAS  Google Scholar 

  47. Cortes-Clerget, M., Berthon, J.-Y., Krolikiewicz-Renimel, I., Chaisemartin, L. & Lipshutz, B. H. Green Chem. 19, 4263–4267 (2017).

    Article  CAS  Google Scholar 

  48. Donner, A., Hagedorn, K., Mattes, L., Drechsler, M. & Polarz, S. Chem. Eur. J. 23, 18129–18133 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Hojo, K., Ichikawa, K., Onishi, M., Fukumori, Y. & Kawasaki, K. J. Pept. Sci. 17, 487–492 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Fuse, S., Mifune, Y., Nakamura, H. & Tanaka, H. Nat. Commun. 7, 13491 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Morschhäuser, R. et al. Green Process Synth. 1, 281–290 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X. Challenges and outlook for catalytic direct amidation reactions. Nat Catal 2, 98–102 (2019). https://doi.org/10.1038/s41929-018-0215-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-018-0215-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing