Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

General synthesis of primary amines via reductive amination employing a reusable nickel catalyst

Abstract

Reusable catalysts based on earth-abundant metals with a broad applicability in organic synthesis are a key to a more sustainable production of fine chemicals, pharmaceuticals and agrochemicals. Herein, we report on a nanostructured nickel catalyst for the general and selective synthesis of primary amines via reductive amination, employing ammonia dissolved in water. Our catalyst, which operates at low temperature and pressure, is highly active, reusable and easy to handle. The synthesis from a specific nickel complex and γ-Al2O3 is straightforward, with the ligand–metal combination of this complex being crucial. Aldehydes (including purely aliphatic ones), aryl–alkyl, dialkyl and diaryl ketones can all be converted smoothly into primary amines. In addition, the amination of pharmaceuticals, bioactive compounds and natural products is demonstrated. Many functional groups—including hydrogenation-sensitive examples—are tolerated. We expect that our findings will inspire others to develop reusable and nanostructured earth-abundant metal catalysts for complex organic transformations.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Synthesis and characterization of the Ni catalyst.

Data availability

All data are available from the authors upon reasonable request.

References

  1. Boddien, A. et al. Efficient dehydrogenation of formic acid using an iron catalyst. Science 333, 1733–1736 (2011).

    Article  CAS  Google Scholar 

  2. Tondreau, A. M. et al. Iron catalysts for selective anti-Markovnikov alkene hydrosilylation using tertiary silanes. Science 335, 567–570 (2012).

    Article  CAS  Google Scholar 

  3. Zuo, W., Lough, A. J., Li, Y. F. & Morris, R. H. Amine(imine)diphosphine iron catalysts for asymmetric transfer hydrogenation of ketones and imines. Science 342, 1080–1083 (2013).

    Article  CAS  Google Scholar 

  4. Friedfeld, M. R. et al. Cobalt precursors for high-throughput discovery of base metal asymmetric alkene hydrogenation catalysts. Science 342, 1076–1080 (2013).

    Article  CAS  Google Scholar 

  5. Hoyt, J. M., Schmidt, V. A., Tondreau, A. M. & Chirik, P. J. Iron-catalyzed intermolecular [2+2] cycloadditions of unactivated alkenes. Science 349, 960–963 (2015).

    Article  CAS  Google Scholar 

  6. Korstanje, T. J., van der Vlugt, J. I., Elsevier, C. J. & de Bruin, B. Hydrogenation of carboxylic acids with homogeneous cobalt catalyst. Science 350, 298–302 (2015).

    Article  CAS  Google Scholar 

  7. Yu, R. P., Hesk, D., Rivera, N., Pelczer, I. & Chirik, P. J. Iron-catalysed tritiation of pharmaceuticals. Nature 529, 195–199 (2016).

    Article  Google Scholar 

  8. Friedfeld, M. R., Zhong, H., Ruck, R. T., Shevlin, M. & Chirik, P. J. Cobalt-catalyzed hydrogenation of enamides enabled by single-electron reduction. Science 360, 888–893 (2018).

    Article  CAS  Google Scholar 

  9. Filonenko, G. A., van Putten, R., Hensen, E. J. M. & Pidko, E. A. Catalytic (de)hydrogenation promoted by nonprecious metals—Co, Fe and Mn: recent advances in an emerging field. Chem. Soc. Rev. 47, 1459–1483 (2018).

    Article  CAS  Google Scholar 

  10. Kallmeier, F. & Kempe, R. Manganese complexes for (de)hydrogenation catalysis: a comparison to cobalt and iron catalysts. Angew. Chem. Int. Ed. 57, 46–60 (2018).

    Article  CAS  Google Scholar 

  11. Jagadeesh, R. V. et al. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science 342, 1073–1076 (2013).

    Article  CAS  Google Scholar 

  12. Westerhaus, F. A. et al. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nat. Chem. 5, 537–543 (2013).

    Article  CAS  Google Scholar 

  13. Jagadeesh, R. V. et al. MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. Science 358, 326–332 (2017).

    Article  CAS  Google Scholar 

  14. Weissermel, K. & Arpe, H.-J. Industrial Organic Chemistry (Wiley-VCH, Weinheim, 2008).

    Google Scholar 

  15. Vardanyan, R. S. & Hruby, V. J. Synthesis of Best-Seller Drugs (Academic Press, Amsterdam, 2016).

    Google Scholar 

  16. Lawrence, S. A. Amines. Synthesis, Properties and Applications (Cambridge Univ. Press, Cambridge, 2004).

    Google Scholar 

  17. Gomez, S., Peters, J. A. & Maschmeyer, T. The reductive amination of aldehydes and ketones and the hydrogenation of nitriles: mechanistic aspects and selectivity control. Adv. Synth. Catal. 344, 1037–1057 (2002).

    Article  CAS  Google Scholar 

  18. Klinkenberg, J. L. & Hartwig, J. F. Catalytic organometallic reactions of ammonia. Angew. Chem. Int. Ed. 50, 86–95 (2011).

    Article  CAS  Google Scholar 

  19. Kim, J., Kim, H. J. & Chang, S. Synthetic uses of ammonia in transition-metal catalysis. Eur. J. Org. Chem. 2013, 3201–3213 (2013).

    Article  CAS  Google Scholar 

  20. Alinezhad, H., Yavari, H. & Salehian, F. Recent advances in reductive amination catalysis and its applications. Curr. Org. Chem. 19, 1021–1049 (2015).

    Article  CAS  Google Scholar 

  21. Legnani, L., Bhawal, B. & Morandi, B. Recent developments in the direct synthesis of unprotected primary amines. Synthesis 49, 776–789 (2017).

    CAS  Google Scholar 

  22. Gross, T., Seayad, A. M., Ahmad, M. & Beller, M. Synthesis of primary amines. First homogeneously catalysed reductive amination with ammonia. Org. Lett. 4, 2055–2058 (2002).

    Article  CAS  Google Scholar 

  23. Ogo, S., Uehara, K., Abura, T. & Fukuzumi, S. pH-Dependent chemoselective synthesis of ɑ-amino acids. Reductive amination of ɑ-keto acids with ammonia catalyzed by acid-stable iridium hydride complexes in water. J. Am. Chem. Soc. 126, 3020–3021 (2004).

    Article  CAS  Google Scholar 

  24. Gallardo-Donaire, J., Ernst, M., Trapp, O. & Schaub, T. Direct synthesis of primary amines via ruthenium-catalysed amination of ketones with ammonia and hydrogen. Adv. Synth. Catal. 358, 358–363 (2016).

    Article  CAS  Google Scholar 

  25. Bódis, J., Lefferts, L., Müller, T. E., Pestman, R. & Lercher, J. A. Activity and selectivity control in reductive amination of butyraldehyde over noble metal catalysts. Catal. Lett. 104, 23–28 (2005).

    Article  Google Scholar 

  26. Dong, B. et al. Heterogeneous Ru-based catalysts for one-pot synthesis of primary amines from aldehydes and ammonia. Catalysts 5, 2258–2270 (2015).

    Article  CAS  Google Scholar 

  27. Nakamura, Y., Kon, K., Touchy, A. S., Shimizu, K.-I. & Ueda, W. Selective synthesis of primary amines by reductive amination of ketones with ammonia over supported Pt catalysts. ChemCatChem 7, 921–924 (2015).

    Article  CAS  Google Scholar 

  28. Chatterjee, M., Ishizaka, T. & Kawanami, H. Reductive amination of furfural to furfurylamine using aqueous ammonia solution and molecular hydrogen. An environmentally friendly approach. Green Chem. 18, 487–496 (2016).

    Article  CAS  Google Scholar 

  29. Nishimura, S., Mizuhori, K. & Ebitani, K. Reductive amination of furfural toward furfurylamine with aqueous ammonia under hydrogen over Ru-supported catalyst. Res. Chem. Intermed. 42, 19–30 (2016).

    Article  CAS  Google Scholar 

  30. Liang, G. et al. Production of primary amines by reductive amination of biomass-derived aldehydes/ketones. Angew. Chem. Int. Ed. 56, 3050–3054 (2017).

    Article  CAS  Google Scholar 

  31. Komanoya, T., Kinemura, T., Kita, Y., Kamata, K. & Hara, M. Electronic effect of ruthenium nanoparticles on efficient reductive amination of carbonyl compounds. J. Am. Chem. Soc. 139, 11493–11499 (2017).

    Article  CAS  Google Scholar 

  32. Alexander, E. R. & Misegades, A. L. A low pressure reductive alkylation method for the conversion of ketones to primary amines. J. Am. Chem. Soc. 70, 1315–1316 (1948).

    Article  CAS  Google Scholar 

  33. Klyuev, M. V. & Khidekel', M. L. Catalytic amination of alcohols, aldehydes and ketones. Russ. Chem. Rev. 49, 14–27 (1980).

    Article  Google Scholar 

  34. Winans, C. F. Hydrogenation of aldehydes in the presence of ammonia. J. Am. Chem. Soc. 61, 3566–3567 (1939).

    Article  CAS  Google Scholar 

  35. Chan, A. S., Chen, C.-C. & Lin, Y.-C. Catalytic reductive amination of α-ketocaboxylic acids as a useful route to amino acids. Appl. Catal. A Gen. 119, L1–L5 (1994).

    Article  CAS  Google Scholar 

  36. Dolezal, P. et al. Reductive amination of cyclopentanone. Appl. Catal. A 286, 202–210 (2005).

    Article  CAS  Google Scholar 

  37. Zimmermann, B., Herwig, J. & Beller, M. The first efficient hydroaminomethylation with ammonia: with dual metal catalysts and two-phase catalysis to primary amines. Angew. Chem. Int. Ed. 38, 2372–2375 (1999).

    Article  CAS  Google Scholar 

  38. Prinz, T. & Driessen-Hölscher, B. Biphasic catalyzed telomerization of butadiene and ammonia: kinetics and new ligands for regioselective reactions. Chem. Eur. J. 5, 2069–2076 (1999).

    Article  CAS  Google Scholar 

  39. Nagano, T. & Kobayashi, S. Palladium-catalyzed allylic amination using aqueous ammonia for the synthesis of primary amines. J. Am. Chem. Soc. 131, 4200–4201 (2009).

    Article  CAS  Google Scholar 

  40. Das, K. et al. Platinum‐catalyzed direct amination of allylic alcohols with aqueous ammonia: selective synthesis of primary allylamines. Angew. Chem. Int. Ed. 51, 150–154 (2012).

    Article  CAS  Google Scholar 

  41. Schranck, J. & Tlili, A. Transition-metal-catalyzed monoarylation of ammonia. ACS Catal. 8, 405–418 (2018).

    Article  CAS  Google Scholar 

  42. Guo, B., Zhang, Q., Li, G., Yao, J. & Hu, C. Aromatic C–N bond formation via simultaneous activation of C–H and N–H bonds: direct oxyamination of benzene to aniline. Green Chem. 14, 1880–1883 (2012).

    Article  CAS  Google Scholar 

  43. Fujita, K.-I., Furukawa, S., Morishima, N., Shimizu, M. & Yamaguchi, R. N‐alkylation of aqueous ammonia with alcohols leading to primary amines catalyzed by water‐soluble N‐heterocyclic carbene complexes of iridium. ChemCatChem 10, 1993–1997 (2018).

    Article  CAS  Google Scholar 

  44. Rösler, S., Obenauf, J. & Kempe, R. A highly active and easily accessible cobalt catalyst for selective hydrogenation of C═O bonds. J. Am. Chem. Soc. 137, 7998–8001 (2015).

    Article  Google Scholar 

  45. Rösler, S., Ertl, M., Irrgang, T. & Kempe, R. Cobalt-catalyzed alkylation of aromatic amines by alcohols. Angew. Chem. Int. Ed. 54, 15046–15050 (2015).

    Article  Google Scholar 

  46. Deibl, N. & Kempe, R. General and mild cobalt-catalyzed C-alkylation of unactivated amides and esters with alcohols. J. Am. Chem. Soc. 138, 10786–10789 (2016).

    Article  CAS  Google Scholar 

  47. Kallmeier, F., Irrgang, T., Dietel, T. & Kempe, R. Highly active and selective manganese C=O bond hydrogenation catalysts: the importance of the multidentate ligand, the ancillary ligands, and the oxidation state. Angew. Chem. Int. Ed. 55, 11806–11809 (2016).

    Article  CAS  Google Scholar 

  48. Deibl, N. & Kempe, R. Manganese-catalyzed multicomponent synthesis of pyrimidines from alcohols and amidines. Angew. Chem. Int. Ed. 56, 1663–1666 (2017).

    Article  CAS  Google Scholar 

  49. Kallmeier, F., Dudziec, B., Irrgang, T. & Kempe, R. Manganese-catalyzed sustainable synthesis of pyrroles from alcohols and amino alcohols. Angew. Chem. Int. Ed. 56, 7261–7265 (2017).

    Article  CAS  Google Scholar 

  50. Zhang, G., Irrgang, T., Dietel, T., Kallmeier, F. & Kempe, R. Manganese-catalyzed dehydrogenative alkylation or ɑ-olefination of alkyl-substituted N-heteroarenes with alcohols. Angew. Chem. Int. Ed. 57, 9131–9135 (2018).

    Article  CAS  Google Scholar 

  51. Forberg, D. et al. Single-catalyst high-weight% hydrogen storage in an N-heterocycle synthesized from lignin hydrogenolysis products and ammonia. Nat. Commun. 7, 13201 (2016).

    Article  CAS  Google Scholar 

  52. Forberg, D., Schwob, T. & Kempe, R. Catalytic condensation for the formation of polycyclic heteroaromatic compounds. Nat. Commun. 9, 695 (2018).

    Article  Google Scholar 

  53. Schwob, T. & Kempe, R. A reusable co catalyst for the selective hydrogenation of functionalized nitroarenes and the direct synthesis of imines and benzimidazoles from nitroarenes and aldehydes. Angew. Chem. Int. Ed. 55, 15175–15179 (2016).

    Article  CAS  Google Scholar 

  54. Zaheer, M. & Kempe, R. Catalytic hydrogenolysis of aryl ethers. A key step in lignin valorization to valuable chemicals. ACS Catal. 5, 1675–1684 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Deutsche Forschungsgemeinschaft for financial support (B1, SFB 840) and E. Arzt for his support through INM. In addition, the authors thank F. Puchtler and M. Ries for PXRD, U. Lacher for HRMS, J. Thiessen for NH3-TPD, J. Schmauch for the assistance with the EELS measurements and J. Seidel, TU Bergakademie Freiberg, Institut für Physikalische Chemie, for XPS.

Author information

Authors and Affiliations

Authors

Contributions

G.H. carried out the catalyst synthesis, catalyst characterization and the catalytic reactions. P.K. and N.d.J. performed HAADF–STEM imaging coupled with EDX and EELS analysis. G.H. and R.K. designed the experiments and co-wrote the manuscript.

Corresponding author

Correspondence to R. Kempe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–6, Supplementary Notes 1–4, Supplementary Methods, Supplementary Figures 1–60, Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hahn, G., Kunnas, P., de Jonge, N. et al. General synthesis of primary amines via reductive amination employing a reusable nickel catalyst. Nat Catal 2, 71–77 (2019). https://doi.org/10.1038/s41929-018-0202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-018-0202-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing