Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RETRACTED ARTICLE: Theory-guided Sn/Cu alloying for efficient CO2 electroreduction at low overpotentials

A Retraction to this article was published on 05 May 2021

An Addendum to this article was published on 25 June 2020

This article has been updated

Abstract

Electrochemical CO2 reduction to formate provides an avenue to reduce globally accelerating CO2 emissions and produce value-added products. Unfortunately, high selectivity in formate electrosynthesis has thus far only been achieved at highly cathodic potentials. Here we use density functional theory to investigate the effect of alloying Cu and Sn on the activity and selectivity towards formate. A theoretical thermodynamic analysis of the reaction energetics suggests that the incorporation of copper into tin could suppress hydrogen evolution and CO production, thus favouring formate generation. Consistent with theoretical trends, the designed CuSn3 catalysts by co-electrodeposition exhibit a Faradaic efficiency of 95% towards formate generation at −0.5 V versus RHE. Furthermore, the catalysts show no degradation over 50 h of operation. In situ Sn L3-edge and Cu K-edge X-ray absorption spectroscopy indicate electron donation from Sn to Cu, which indicates positive oxidation states of Sn in CuSn3 under operating conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DFT calculations on Sn, CuSn, CuSn3 and Cu.
Fig. 2: Preparation and structural characterization of CuxSny catalysts.
Fig. 3: In situ observation of the electronic structure of Sn.
Fig. 4: Evaluation of CO2RR catalytic activity by electrochemical measurements.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information and Supplementary Data. Extra data are available from the corresponding author upon reasonable request.

Change history

References

  1. Lin, S. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1215 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Gao, S. et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529, 68–71 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Liu, M. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Zheng, X. et al. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nat. Chem. 10, 149–154 (2017).

    Article  PubMed  CAS  Google Scholar 

  5. Jhong, H. R., Ma, S. & Kenis, P. J. Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges and future opportunities. Nanotechnology 2, 191–199 (2013).

    Google Scholar 

  6. Feaster, J., Shi, C., Cave, E. R., Nørskov, J. & Jaramillo, T. F. Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal. 7, 4822–4827 (2017).

    Article  CAS  Google Scholar 

  7. Zheng, X., De Luna, P., de Arquer, F. P., Yang, P. & Sargent, E. H. Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule 1, 1–12 (2017).

    Article  CAS  Google Scholar 

  8. Du, D., Lan, R., Humphreys, J. & Tao Progress in inorganic cathode catalysts for electrochemical conversion of carbon dioxide into formate or formic acid. J. Appl. Electrochem. 47, 661–678 (2017).

    Article  CAS  Google Scholar 

  9. Reda, T., Plugge, C. M., Abram, N. J. & Hirst, J. Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proc. Natl Acad. Sci. USA 105, 10654–10658 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energ. Environ. Sci. 5, 7050–7060 (2012).

    Article  CAS  Google Scholar 

  11. Chen, Y. & Kanan, M. W. Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J. Am. Chem. Soc. 134, 1986–1989 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Zhu, Q. et al. Efficient reduction of CO2 into formic acid on a lead or tin electrode using an ionic liquid catholyte mixture. Angew. Chem. Int. Ed. 55, 9012–9016 (2016).

    Article  CAS  Google Scholar 

  13. Li, F., Chen, L., Knowles, G. P., MacFarlane, D. R. & Zhang, J. Hierarchical mesoporous SnO2 nanosheets on carbon cloth: a robust and flexible electrocatalyst for CO2 reduction. Angew. Chem. Int. Ed. 56, 505–509 (2017).

    Article  CAS  Google Scholar 

  14. Lee, C. H. & Kanan, M. W. Controlling H+ vs CO2 reduction selectivity on Pb electrodes. ACS Catal. 5, 465–469 (2015).

    Article  CAS  Google Scholar 

  15. Min, X. & Kanan, M. W. Pd-catalyzed electrohydrogenation of carbon dioxide to formate: high mass activity at low overpotential and identification of the deactivation pathway. J. Am. Chem. Soc. 137, 4701–4708 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, S., Kang, P. & Meyer, T. J. Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J. Am. Chem. Soc. 136, 1734–1737 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Lei, F. et al. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. Nat. Commun. 7, 12697 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Clark, E. L., Hahn, C., Jaramillo, T. F. & Bell, A. T. Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity. J. Am. Chem. Soc. 139, 15848–15857 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Sun, K., Cheng, T., Wu, L. Z., Goddard, W. A. & Wang, Z. Ultrahigh mass activity for carbon dioxide reduction enabled by gold–iron core–shell nanoparticles. J. Am. Chem. Soc. 139, 15608–15611 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Kortlever, R., Peters, I., Koper, S. & Koper, M. T. Electrochemical CO2 reduction to formic acid at low overpotential and with high Faradaic efficiency on carbon-supported bimetallic Pd–Pt nanoparticles. ACS Catal. 5, 3916–3923 (2015).

    Article  CAS  Google Scholar 

  21. Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 11002–11014 (2013).

    Article  CAS  Google Scholar 

  22. Villars, P. & Calvert, L. D. Pearson’s Handbook of Crystallographic Data for Intermetallic Phases Vol. 4, 5366 (ASM International, Materials Park, Russell Township, 1991).

  23. Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Nørskov, J. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energ. Environ. Sci. 3, 1311–1315 (2010).

    Article  CAS  Google Scholar 

  24. Peterson, A. A. & Nørskov, J. K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 3, 251–258 (2012).

    Article  CAS  Google Scholar 

  25. Yoo, J. S., Christensen, R., Vegge, T., Nørskov, J. & Studt, F. Theoretical insight into the trends that guide the electrochemical reduction of carbon dioxide to formic acid. ChemSusChem 9, 358–363 (2015).

    Article  PubMed  CAS  Google Scholar 

  26. Medford, A. et al. Assessing the reliability of calculated catalytic ammonia synthesis rates. Science 345, 197–202 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Bicelli, L. P., Bozzini, B., Mele, C. & D’Urzo, L. A review of nanostructural aspects of metal electrodeposition. Int. J. Electron. Sci. 3, 356–408 (2008).

    CAS  Google Scholar 

  28. Proffen, K., Page, K., Seshadri, R. & Cheetham A pair distribution function for nanoparticle studies. Los Alamos Sci. 30, 161–164 (2006).

    Google Scholar 

  29. Liu, Z., Handa, K., Kaibuchi, K., Tanaka, Y. & Kawai, J. Comparison of the Sn L edge X-ray absorption spectra and the corresponding electronic structure in Sn, SnO and SnO2. J. Electron. Spectros. Relat. Phenomena 135, 155–158 (2004).

    Article  CAS  Google Scholar 

  30. Gorlin, Y. et al. In situ X‑ray absorption spectroscopy investigation of a bifunctional manganese oxide catalyst with high activity for electrochemical water oxidation and oxygen reduction. J. Am. Chem. Soc. 135, 8525–8534 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Henkelman, G., Arnaldsson, A. & Jonsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36, 354–360 (2006).

    Article  Google Scholar 

  32. Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 21, 084204 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, D. et al. Atomic layer deposited coatings to significantly stabilize anodes for Li ion batteries: effects of coating thickness and the size of anode particles. J. Mater. Chem. A 2, 2306–2312 (2014).

    Article  CAS  Google Scholar 

  34. Horsley, J. A. Relationship between the area of L2,3 X-ray absorption edge resonances and the d orbital occupancy in compounds of platinum and iridium. J. Chem. Phys. 76, 1451–1460 (1982).

    Article  CAS  Google Scholar 

  35. Cramer, S. P., Eccles, T. K., Kutzler, F. W. & Hodgson, K. Molybdenum X-ray absorption edge spectra. The chemical state of molybdenum in nitrogenase. J. Am. Chem. Soc. 98, 1287–1289 (1975).

    Article  Google Scholar 

  36. Sun, S., Li, H. & Xu, Z. J. Impact of surface area in evaluation of catalyst activity. Joule 2, 1024–1027 (2018).

    Article  Google Scholar 

  37. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  PubMed  Google Scholar 

  38. Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  39. Kresse, G. & Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys. Condens. Matter 6, 8245–8257 (1994).

    Article  CAS  Google Scholar 

  40. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7896 (1990).

    Article  CAS  Google Scholar 

  41. Bahn, S. & Jacobsen, K. An object-oriented scripting interface to a legacy electronic structurecode. Comput. Sci. Eng. 2, 56–67 (2002).

    Article  Google Scholar 

  42. Wellendorff, J. et al. Density functionals for surface science: exchange-correlation model development with Bayesian error estimation. Phys. Rev. B 85, 235149 (2012).

    Article  CAS  Google Scholar 

  43. Liu, X. et al. Understanding trends in electrochemical carbon dioxide reduction rates. Nat. Commun. 8, 15438 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  45. Nørskov, J., Rossmeisl, J., Logadottir, A. & Lindqvist, L. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  CAS  Google Scholar 

  46. Bengtsson, L. Dipole correction for surface supercell calculations. Phys. Rev. B 59, 12301–12305 (1999).

    Article  CAS  Google Scholar 

  47. Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Bai, X. et al. Exclusive formation of formic acid from CO2 electroreduction by a tunable Pd–Sn alloy. Angew. Chem. Int. Ed. 56, 12219–12223 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (contract no. DE-AC02-76SF00515). Theoretical calculations were based on work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the US Department of Energy under award no. DE-SC0004993. Theoretical calculations used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under contract no. DE-AC02- 05CH11231. The authors thank S. Fakra and acknowledge use of Beamline 10.3.2 at the Advanced Light Source for collection of XAS data. The Advanced Light Source and Molecular Foundry are supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231. The authors thank R. Davis and E. Jonathan from SSRL for XAS measurements. Use of the Stanford Synchrotron Radiation Lightsource (SLAC National Accelerator Laboratory) is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-76SF00515. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract DE-AC02-06CH11357. The authors acknowledge support with electron microscopy from the Stanford Nano Shared Facilities. Y.J. thanks the Knut & Alice Wallenberg Foundation for financial support through the ‘Wallenberg Postdoctoral Scholarship Program’ at Stanford.

Author information

Authors and Affiliations

Authors

Contributions

X.Z. and Y.C. conceived the research and designed the experiments. X.Z., J.T., J.W. and B.L. performed electrochemical measurements. Y.J. and K.C. carried out simulation parts. M.F.T. supervised and designed X-ray absorption and XRD experiments. X.Z., K.L. and H.-G.S. performed the X-ray absorption measurements. H.-G.S. carried out XRD measurements. Y.L. performed TEM measurements. All authors discussed the results and assisted during manuscript preparation.

Corresponding author

Correspondence to Yi Cui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–19, Supplementary Tables 1–3 and Supplementary References

Supplementary Data

Optimized Cartesian coordinates of the CuSn and CuSn3 models

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Ji, Y., Tang, J. et al. RETRACTED ARTICLE: Theory-guided Sn/Cu alloying for efficient CO2 electroreduction at low overpotentials. Nat Catal 2, 55–61 (2019). https://doi.org/10.1038/s41929-018-0200-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-018-0200-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing