Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Catalytic CO2 reduction by palladium-decorated silicon–hydride nanosheets


Heterogeneous conversion of CO2 to fuels by Si surface hydrides has recently attracted broad research interest. Being earth-abundant, low-cost and non-toxic, elemental Si is a very attractive candidate for this process, which targets CO2 conversion to synthetic fuels on a gigatonne-per-year scale. It is well known, however, that silicon hydrides react stoichiometrically with CO2, and all attempts have failed to achieve catalytic conversion. The problem originates from the formation of inactive silanols and siloxanes with permanent loss of Si hydrides. Here, we deposit Pd on the surface of Si nanosheets, aiming to address the core of the problem. An operando infrared study shows Si hydrides successfully regenerating on such surfaces exposed to CO2 and H2. We demonstrate that silicon–hydride nanosheets decorated with Pd nanoparticles can enable the reverse water–gas shift reaction in a catalytic cycle.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Preparation and surface chemistry of Pd@SiNS.
Fig. 2: Materials characterization.
Fig. 3: CO2 reduction performance.
Fig. 4: Isotope labelled in situ DRIFTS experiments and interpretation (catalytic mechanism).
Fig. 5: DFT simulation results.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.


  1. Faunce, T. A. et al. Energy and environment policy case for a global project on artificial photosynthesis. Energy Environ. Sci. 6, 695–698 (2013).

    Article  Google Scholar 

  2. Goeppert, A., Czaun, M., Jones, J.-P., Surya Prakash, G. K. & Olah, G. A. Recycling of carbon dioxide to methanol and derived products—closing the loop. Chem. Soc. Rev. 43, 7995–8048 (2014).

    Article  CAS  Google Scholar 

  3. Rongé, J. et al. Monolithic cells for solar fuels. Chem. Soc. Rev. 43, 7963–7981 (2014).

    Article  Google Scholar 

  4. Ozin, G. A. Throwing new light on the reduction of CO2. Adv. Mater. 27, 1957–1963 (2015).

    Article  CAS  Google Scholar 

  5. Zubrin, R., Wagner, R. & Clarke, A. C. The Case for Mars (Free Press, New York, 2011).

  6. Matsuo, T. & Kawaguchi, H. From carbon dioxide to methane: homogeneous reduction of carbon dioxide with hydrosilanes catalyzed by zirconium–borane complexes. J. Am. Chem. Soc. 128, 12362–12363 (2006).

    Article  CAS  Google Scholar 

  7. Berkefeld, A., Piers, W. E. & Parvez, M. Tandem frustrated Lewis pair/tris(pentafluorophenyl)borane-catalyzed deoxygenative hydrosilylation of carbon dioxide. J. Am. Chem. Soc. 132, 10660–10661 (2010).

    Article  CAS  Google Scholar 

  8. Riduan, S. N., Ying, J. Y. & Zhang, Y. Mechanistic insights into the reduction of carbon dioxide with silanes over N-heterocyclic carbene catalysts. ChemCatChem 5, 1490–1496 (2013).

    Article  CAS  Google Scholar 

  9. Dasog, M. et al. Size vs surface: tuning the photoluminescence of freestanding silicon nanocrystals across the visible spectrum via surface groups. ACS Nano 8, 9636–9648 (2014).

    Article  CAS  Google Scholar 

  10. Sun, W. et al. Heterogeneous reduction of carbon dioxide by hydride-terminated silicon nanocrystals. Nat. Commun. 7, 12553 (2016).

    Article  CAS  Google Scholar 

  11. Wong, A. P. Y. et al. Tailoring CO2 reduction with doped silicon nanocrystals. Adv. Sustain. Syst. 1, 1700118 (2017).

    Article  Google Scholar 

  12. Dasog, M., Kraus, S., Sinelnikov, R., Veinot, J. & Rieger, B. CO2 to methanol conversion using hydride terminated porous silicon nanoparticles. Chem. Commun. 53, 3114–3117 (2017).

    Article  CAS  Google Scholar 

  13. Nakano, H. et al. Soft synthesis of single-crystal silicon monolayer sheets. Angew. Chem. Int. Ed. 45, 6303–6306 (2006).

    Article  CAS  Google Scholar 

  14. Chandra, S., Masuda, Y., Shirahata, N. & Winnik, F. M. Transition-metal-doped NIR-emitting silicon nanocrystals. Angew. Chem. Int. Ed. 56, 6157–6160 (2017).

    Article  CAS  Google Scholar 

  15. Zhang, Y. et al. Tunable metal/silicon hybrid dots catalysts for hydrocarbon selective oxidation. J. Phys. Chem. C 116, 20363–20367 (2012).

    Article  CAS  Google Scholar 

  16. Albers, P., Pietsch, J. & Parker, S. F. Poisoning and deactivation of palladium catalysts. J. Mol. Catal. A 173, 275–286 (2001).

    Article  CAS  Google Scholar 

  17. Martins, J. et al. CO2 hydrogenation with shape-controlled Pd nanoparticles embedded in mesoporous silica: elucidating stability and selectivity issues. Catal. Commun. 58, 11–15 (2014).

    Article  Google Scholar 

  18. Daza, Y. A. & Kuhn, J. N. CO2 conversion by reverse water gas shift catalysis: comparison of catalysts, mechanisms and their consequences for CO2 conversion to liquid fuels. RSC Adv. 6, 49675–49691 (2016).

    Article  CAS  Google Scholar 

  19. Ye, J., Ge, Q. & Liu, C. Effect of PdIn bimetallic particle formation on CO2 reduction over the Pd–In/SiO2 catalyst. Chem. Eng. Sci. 135, 193–201 (2015).

    Article  CAS  Google Scholar 

  20. Wang, Z.-Q. et al. High-performance and long-lived Cu/SiO2 nanocatalyst for CO2 hydrogenation. ACS Catal. 5, 4255–4259 (2015).

    Article  CAS  Google Scholar 

  21. Kunkes, E. L., Studt, F., Abild-Pedersen, F., Schlögl, R. & Behrens, M. Hydrogenation of CO2 to methanol and CO on Cu/ZnO/Al2O3: is there a common intermediate or not? J. Catal. 328, 43–48 (2015).

    Article  CAS  Google Scholar 

  22. McKean, D. C. On the assignment of SiH and SiD stretching frequencies: a reanalysis of the ν7 bands of Si2H6 and Si2D6 and a harmonic local mode force field for disilane. Spectrochim. Acta A Mol. Spectrosc. 48, 1335–1345 (1992).

    Article  Google Scholar 

  23. Benson, J. E., Kohn, H. W. & Boudart, M. On the reduction of tungsten trioxide accelerated by platinum and water. J. Catal. 5, 307–313 (1966).

    Article  CAS  Google Scholar 

  24. Levy, R. B. & Boudart, M. The kinetics and mechanism of spillover. J. Catal. 32, 304–314 (1974).

    Article  CAS  Google Scholar 

  25. Baumgarten, E. & Denecke, E. Hydrogen spillover in the system Pt Al2O3. I. Fundamental observations. J. Catal. 95, 296–299 (1985).

    Article  CAS  Google Scholar 

  26. El-Sayed, A. M., Watkins, M. B., Grasser, T., Afanas'Ev, V. V. & Shluger, A. L. Hydrogen-induced rupture of strained SiO bonds in amorphous silicon dioxide. Phys. Rev. Lett. 114, 115503 (2015).

    Article  Google Scholar 

  27. Jia, J. et al. Photothermal catalyst engineering: hydrogenation of gaseous CO2 with high activity and tailored selectivity. Adv. Sci. 4, 1700252 (2017).

    Article  Google Scholar 

  28. Silaghi, M. C., Comas-Vives, A. & Copéret, C. CO2 activation on Ni/γ-Al2O3 catalysts by first-principles calculations: from ideal surfaces to supported nanoparticles. ACS Catal. 6, 4501–4505 (2016).

    Article  CAS  Google Scholar 

  29. Bartolomé, J. et al. Magnetization of Pt13 clusters supported in an NaY zeolite: a XANES and XMCD study. Phys. Rev. B 80, 014404 (2009).

    Article  Google Scholar 

  30. Ewing, C. S., Veser, G., McCarthy, J. J., Johnson, J. K. & Lambrecht, D. S. Effect of support preparation and nanoparticle size on catalyst–support interactions between Pt and amorphous silica. J. Phys. Chem. C 119, 19934–19940 (2015).

    Article  CAS  Google Scholar 

  31. Di Paola, C., Pavan, L., D'Agosta, R. & Baletto, F. Structural stability and uniformity of magnetic Pt13 nanoparticles in NaY zeolite. Nanoscale 9, 15658–15665 (2017).

    Article  CAS  Google Scholar 

  32. Dong, W. & Hafner, J. Dissociative adsorption on Pd(111). Phys. Rev. B 56, 15396–15403 (1997).

    Article  CAS  Google Scholar 

  33. Liu, D., Gao, Z. Y., Wang, X. C., Zeng, J. & Li, Y. M. DFT study of hydrogen production from formic acid decomposition on Pd–Au alloy nanoclusters. Appl. Surf. Sci. 426, 194–205 (2017).

    Article  CAS  Google Scholar 

  34. Johansson, M. et al. Hydrogen adsorption on palladium and palladium hydride at 1 bar. Surf. Sci. 604, 718–729 (2010).

    Article  CAS  Google Scholar 

  35. Resch, C., Berger, H. F., Rendulic, K. D. & Bertel, E. Adsorption dynamics for the system hydrogen/palladium and its relation to the surface electronic-structure. Surf. Sci. 316, L1105–L1109 (1994).

    Article  CAS  Google Scholar 

  36. Dong, W., Kresse, G. & Hafner, J. Dissociative adsorption of H2 on the Pd(111) surface. J. Mol. Catal. A 119, 69–76 (1997).

    Article  CAS  Google Scholar 

  37. Leopold, K., Maier, M. & Schuster, M. Preparation and characterization of Pd/Al2O3 and Pd nanoparticles as standardized test material for chemical and biochemical studies of traffic related emissions. Sci. Total Environ. 394, 177–182 (2008).

    Article  CAS  Google Scholar 

  38. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  39. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

  40. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  41. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  CAS  Google Scholar 

  42. Bučko, T., Hafner, J., Lebègue, S. & Ángyán, J. G. Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals corrections. J. Phys. Chem. A 114, 11814–11824 (2010).

    Article  Google Scholar 

  43. Wang, Z., Selbach, S. M. & Grande, T. Van der Waals density functional study of the energetics of alkali metal intercalation in graphite. RSC Adv. 4, 4069–4079 (2014).

    CAS  Google Scholar 

Download references


G.A.O. acknowledges financial support from the Ontario Ministry of Research and Innovation (MRI), the Ministry of Economic Development, Employment and Infrastructure (MEDI), the Ministry of the Environment and Climate Change’s (MOECC) Best in Science (BIS) Award, Ontario Center of Excellence Solutions 2030 Challenge Fund, Ministry of Research Innovation and Science (MRIS) Low Carbon Innovation Fund, Imperial Oil, the University of Toronto’s Connaught Innovation Fund (CIF), Connaught Global Challenge (CGC) Fund and the Natural Sciences and Engineering Research Council of Canada (NSERC). C.Q. and W.S. acknowledge the Connaught Fund and Department of Chemistry at the University of Toronto for funding. M.M. and C.V.S. acknowledge financial support in part by the Natural Sciences and Engineering Council of Canada (NSERC), University of Toronto, Connaught Global Challenge Award and Hart Professorship. The computations were carried out using University of Toronto computers and Compute Canada facilities, particularly SciNet and Calcul-Quebec. The authors acknowledge continued support from these supercomputing facilities. The authors thank X.Yan for helpful discussions on materials characterizations.

Author information

Authors and Affiliations



C.Qian, W.S. and G.A.O. conceived and designed the experiments. C.Qian, W.S., D.L.H.H. and S.G.H.K. prepared the materials and carried out the batch and flow experiments. C.Qian, W.S., C.Qiu and L.Wan. prepared the materials and carried out the batch with high-intensity light experiments. M.M. conducted DFT simulations under the supervision of C.V.S., and together they did the analysis and discussed the simulation data with C.Qian, W.S., M.G. and G.A.O. With the support of T.E.W., C.Qian, W.S. and D.L.H.H. performed the in situ DRIFTS study. A.A.T. conducted the Aspen simulation and estimated the equilibrium composition. Y.F.L. and I.G. performed SEM and TEM characterizations. M.X. and L.Wang performed XPS characterizations. Y.D. carried out the nitrogen sorption study. C.Qian, W.S. and G.A.O. co-wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Chandra Veer Singh or Geoffrey A. Ozin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–12; Supplementary Note 1

Supplementary Data Set

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, C., Sun, W., Hung, D.L.H. et al. Catalytic CO2 reduction by palladium-decorated silicon–hydride nanosheets. Nat Catal 2, 46–54 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing