Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction

Abstract

Single-atom catalysts offer a pathway to cost-efficient catalysis using the minimal amount of precious metals. However, preparing and keeping them stable during operation remains a challenge. Here we report the synthesis of double transition metal MXene nanosheets—Mo2TiC2Tx, with abundant exposed basal planes and Mo vacancies in the outer layers—by electrochemical exfoliation, enabled by the interaction between protons and the surface functional groups of Mo2TiC2Tx. The as-formed Mo vacancies are used to immobilize single Pt atoms, enhancing the MXene’s catalytic activity for the hydrogen evolution reaction. The developed catalyst exhibits a high catalytic ability with low overpotentials of 30 and 77 mV to achieve 10 and 100 mA cm−2 and a mass activity about 40 times greater than the commercial platinum-on-carbon catalyst. The strong covalent interactions between positively charged Pt single atoms and the MXene contribute to the exceptional catalytic performance and stability.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Morphology evolution of the catalysts during synthesis.
Fig. 2: Structural characterization of the catalyst.
Fig. 3: Investigation of the synthesis mechanisms of Mo2TiC2Tx–PtSA.
Fig. 4: Electrocatalytic performance for Mo2TiC2Tx–PtSA and reference HER catalysts.
Fig. 5: DFT calculation results.

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. 1.

    Zou, X. & Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44, 5148–5180 (2015).

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Niether, C. et al. Improved water electrolysis using magnetic heating of FeC–Ni core–shell nanoparticles. Nat. Energy 3, 476–483 (2018).

    CAS  Article  Google Scholar 

  3. 3.

    Liu, Y. et al. Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution. Nat. Energy 2, 17127 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Chen, C. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014).

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Morales-Guio, C. G., Stern, L.-A. & Hu, X. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 43, 6555–6569 (2014).

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Jones, J. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353, 150–154 (2016).

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Cheng, N. et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 7, 13638 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Deng, J. et al. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 8, 1594–1601 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    Li, X. et al. Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 28, 2427–2431 (2016).

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Lin, L. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 544, 80–83 (2017).

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Zhang, Z. et al. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nat. Commun. 8, 16100 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Zhang, L., Han, L., Liu, H., Liu, X. & Luo, J. Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media. Angew. Chem. Int. Ed. 56, 13694–13698 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Li, H. et al. Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation. Nat. Nanotech. 13, 411–417 (2018).

    CAS  Article  Google Scholar 

  15. 15.

    Gao, C., Wang, J., Xu, H. & Xiong, Y. Coordination chemistry in the design of heterogeneous photocatalysts. Chem. Soc. Rev. 46, 2799–2823 (2017).

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Yang, H. B. et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018).

  17. 17.

    Liu, G. et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem. 9, 810–816 (2017).

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Fei, H. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63–72 (2018).

    Article  Google Scholar 

  19. 19.

    Yang, X.-F. et al. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    Zhang, C. et al. Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium. ACS Nano 11, 6930–6941 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    Yang, M. et al. Catalytically active Au-O(OH)x-species stabilized by alkali ions on zeolites and mesoporous oxides. Science 346, 1498–1501 (2014).

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Liu, P. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352, 797–800 (2016).

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Wan, J. et al. Defect effects on TiO2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater. 30, 1705369 (2018).

    Article  Google Scholar 

  24. 24.

    Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Shahzad, F. et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016).

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Naguib, M. et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc. 135, 15966–15969 (2013).

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Xie, X. et al. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 26, 513–523 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    Liang, X., Garsuch, A. & Nazar, L. F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem. Int. Ed. 54, 3907–3911 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    Lukatskaya, M. R. et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Ma, T. Y., Cao, J. L., Jaroniec, M. & Qiao, S. Z. Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angew. Chem. Int. Ed. 55, 1138–1142 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    Seh, Z. W. et al. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 1, 589–594 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    An, X. et al. The synergetic effect of Ti3C2 MXene and Pt as co-catalysts for highly efficient photocatalytic hydrogen evolution over g-C3N4. Phys. Chem. Chem. Phys. 20, 11405–11411 (2018).

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Pandey, M. & Thygesen, K. S. Two-dimensional MXenes as catalysts for electrochemical hydrogen evolution: a computational screening study. J. Phys. Chem. C 121, 13593–13598 (2017).

    CAS  Article  Google Scholar 

  34. 34.

    Satheeshkumar, E. et al. One-step solution processing of Ag, Au and Pd@MXene hybrids for SERS. Sci. Rep. 6, 32049 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Ming, M. et al. Promoted effect of alkalization on the catalytic performance of Rh/alk-Ti3C2X2 (XO, F) for the hydrodechlorination of chlorophenols in base-free aqueous medium. Appl. Catal. B 210, 462–469 (2017).

    CAS  Article  Google Scholar 

  36. 36.

    Li, Z. et al. Reactive metal–support interactions at moderate temperature in two-dimensional niobium-carbide-supported platinum catalysts. Nat. Catal. 1, 349–355 (2018).

    Article  Google Scholar 

  37. 37.

    Karlsson, L. H., Birch, J., Halim, J., Barsoum, M. W. & Persson, P. O. Atomically resolved structural and chemical investigation of single MXene sheets. Nano Lett. 15, 4955–4960 (2015).

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Tao, Q. et al. Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nat. Commun. 8, 14949 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Hunt, S. T., Milina, M., Wang, Z. & Román-Leshkov, Y. Activating earth-abundant electrocatalysts for efficient, low-cost hydrogen evolution/oxidation: sub-monolayer platinum coatings on titanium tungsten carbide nanoparticles. Energy Environ. Sci. 9, 3290–3301 (2016).

    CAS  Article  Google Scholar 

  40. 40.

    Huang, X. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 348, 1230–1234 (2015).

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Gao, G., O’Mullane, A. P. & Du, A. 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction. ACS Catal. 7, 494–500 (2016).

    Article  Google Scholar 

  42. 42.

    Ling, C., Shi, L., Ouyang, Y. & Wang, J. Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor. Chem. Mater. 28, 9026–9032 (2016).

    CAS  Article  Google Scholar 

  43. 43.

    Liu, Y. et al. Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J. Am. Chem. Soc. 136, 15670–15675 (2014).

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Lian, P. et al. Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy 40, 1–8 (2017).

    CAS  Article  Google Scholar 

  45. 45.

    Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007).

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Tavakkoli, M. et al. Electrochemical activation of single-walled carbon nanotubes with pseudo-atomic-scale platinum for the hydrogen evolution reaction. ACS Catal. 7, 3121–3130 (2017).

    CAS  Article  Google Scholar 

  47. 47.

    Zhang, H. et al. Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Sci. Adv. 4, eaao6657 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Nørskov, J. K. et al. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23–J26 (2005).

    Article  Google Scholar 

  49. 49.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  50. 50.

    Perdew, J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 33, 8822 (1986).

    CAS  Article  Google Scholar 

  51. 51.

    Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank P. Li from Nanjing University of Aeronautics and Astronautics, Nanjing for performing DFT calculations. Y. Zheng from the University of Adelaide and Y.-C. Huang from the National Synchrotron Radiation Research Centre are acknowledged for their valuable discussions. The authors acknowledge use of the JEOL 2010 and JEOL JEM-ARM200F STEM within the University of Wollongong (UoW) Electron Microscopy Centre. This project was financially supported by the Australian Research Council (ARC) through ARC Discovery projects (DP160104340 and DP170100436) and a Rail Manufacturing CRC (RMCRC) project.

Author information

Affiliations

Authors

Contributions

G.W., J.Z. and Y.Z. conceived the idea. J.Z. and Y.Z. performed the electrochemical experiments. X.G. synthesized the Mo2TiC2Tx MXene. Y.G. provided the MAX materials for this work. J.Z., Y.Z. and X.G. carried out characterizations. C.-L.D., R.-S.L. and C.-P.H. performed and analysed EXAFS and XANES analysis. J.Z., Y.Z., C.C., Y.L., Y.G. and G.W. proposed the mechanism research and discussions. All authors contributed to writing of the manuscript.

Corresponding authors

Correspondence to Yadong Li or Yury Gogotsi or Guoxiu Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs 1–31, Supplementary Tables 1–4, Supplementary Notes 1–5 and Supplementary References

Supplementary Data 1

Atomic coordinates of the optimized (3x3) Mo2TiC2O2–PtSA model

Supplementary Data 2

Atomic coordinates of the optimized (3x3) Mo2TiC2O2 model

Supplementary Data 3

Atomic coordinates of the optimized (4x4) Mo2TiC2O2–PtSA model

Supplementary Data 4

Atomic coordinates of the optimized (4x4) Mo2TiC2O2 model

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhao, Y., Guo, X. et al. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat Catal 1, 985–992 (2018). https://doi.org/10.1038/s41929-018-0195-1

Download citation

Further reading