Rapid virtual screening of enantioselective catalysts using CatVS


The development of computational tools to support organic synthesis, including the prediction of reaction pathways, optimization and selectivity, is a topic of intense current interest. Transition state force fields, derived by the quantum-guided molecular mechanics method, rapidly calculate the stereoselectivity of organic reactions accurately enough to allow predictive virtual screening. Here we describe CatVS, an automated tool for the virtual screening of substrate and ligand libraries for asymmetric catalysis within hours. It is shown for the OsO4-catalysed cis-dihydroxylation that the results from the automated set-up are indistinguishable from a manual substrate screen. Predictive computational ligand selection is demonstrated in the virtual ligand screen of a library of diphosphine ligands for the rhodium-catalysed asymmetric hydrogenation of enamides. Subsequent experimental testing verified that the most selective substrate–ligand combinations are successfully identified by the virtual screen. CatVS is therefore a promising tool to increase the efficiency of high-throughput experimentation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Methods for predicting stereoselectivity.
Fig. 2: Flowchart for CatVS.
Fig. 3: Automated virtual screen of 12 substrates for the cis-dihydroxylation reaction with CatVS.
Fig. 4: Use of the CatVS virtual screening tool to select ligands for asymmetric catalysis.

Data availability

All other data is available from the authors upon reasonable request.


  1. 1.

    Kitchen, D. B., Decornez, H., Fur, J. R. & Bajorath, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov. 3, 935–949 (2004).

    CAS  Article  Google Scholar 

  2. 2.

    Klucznik, T. et al. Efficient syntheses of diverse, medicinally relevant targets planned by computer and executed in the laboratory. Chem 4, 522–532 (2018).

    CAS  Article  Google Scholar 

  3. 3.

    Segler, M. H. S., Preuss, M. & Waller, M. P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555, 604–610 (2018).

    CAS  Article  Google Scholar 

  4. 4.

    Ahneman, D. T., Estrada, J. G., Lin, S., Dreher, S. D. & Doyle, A. G. Predicting reaction performance in C–N cross-coupling using machine learning. Science 360, 186–190 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    Poree, C. & Schoenebeck, F. A. Holy grail in chemistry: computational catalyst design: feasible or fiction?. Acc. Chem. Res. 50, 605–608 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    Shevlin, R. Practical high-throughput experimentation for chemists. ACS Med. Chem. Lett. 8, 601–607 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    Houk, K. N. & Cheong, P. H. Y. Computational prediction of small-molecule catalyst. Nature 455, 309–313 (2008).

    CAS  Article  Google Scholar 

  8. 8.

    Kwon, D.-H. et al. Computational transition-state design provides experimentally verified Cr(P,N) catalysts for control of ethylene trimerization and tetramerization. ACS Catal. 8, 1138–1142 (2018).

    CAS  Article  Google Scholar 

  9. 9.

    Rooks, B. J., Haas, M. R., Sepúlveda, D., Lu, T. & Wheeler, S. E. Prospects for the computational design of bipyridine N,N′-dioxide catalysts for asymmetric propargylation reactions. ACS Catal. 5, 272–280 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    Harper, K. C. & Sigman, M. S. Three-dimensional correlation of steric and electronic free energy relationships guides asymmetric propargylation. Science 333, 1875–1878 (2011).

    CAS  Article  Google Scholar 

  11. 11.

    Harper, K. C. & Sigman, M. S. Predicting and optimizing asymmetric catalyst performance using the principles of experimental design and steric parameters. Proc. Natl Acad. Sci. USA 108, 2179–2183 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    Milo, A., Neel, A. J., Toste, F. D. & Sigman, M. S. A data-intensive approach to mechanistic elucidation applied to chiral anion catalysis. Science 347, 737–743 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    Tropsha, A. Best practices for QSAR model development, validation, and exploitation. Mol. Inf. 29, 476–488 (2010).

    CAS  Article  Google Scholar 

  14. 14.

    Hansen, E., Rosales, A. R., Tutkowski, B., Norrby, P.-O. & Wiest, O. Prediction of stereochemistry using Q2MM. Acc. Chem. Res. 49, 996–1005 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Rosales, A. R. et al. Application of Q2MM to predictions in stereoselective synthesis. Chem. Comm. 54, 8294–8311 (2018).

    CAS  Article  Google Scholar 

  16. 16.

    Eksterowicz, J. E. & Houk, K. N. Transition-state modeling with empirical force fields. Chem. Rev. 93, 2439–2461 (1993).

    CAS  Article  Google Scholar 

  17. 17.

    Norrby, P.-O., Rasmussen, T., Haller, J., Strassner, T. & Houk, K. N. Rationalizing the stereoselectivity of osmium tetroxide asymmetric dihydroxylations with transition state modeling using quantum mechanics-guided molecular mechanics. J. Am. Chem. Soc. 121, 10186–10192 (1999).

    CAS  Article  Google Scholar 

  18. 18.

    Fristrup, P., Tanner, D. & Norrby, P.-O. Updating the asymmetric osmium‐catalyzed dihydroxylation (AD) mnemonic: Q2MM modeling and new kinetic measurements. Chirality 15, 360–368 (2003).

    CAS  Article  Google Scholar 

  19. 19.

    Fristrup, P., Jensen, G. H., Andersen, M. L. N., Tanner, D. & Norrby, P.-O. Combining Q2MM modeling and kinetic studies for refinement of the osmium-catalyzed asymmetric dihydroxylation (AD) mnemonic. J. Organomet. Chem. 691, 2182–2198 (2006).

    CAS  Article  Google Scholar 

  20. 20.

    Donoghue, P. J., Helquist, P., Norrby, P.-O. & Wiest, O. Development of a Q2MM force field for the asymmetric rhodium catalyzed hydrogenation of enamides. J. Chem. Theory Comput. 4, 1313–1323 (2008).

    CAS  Article  Google Scholar 

  21. 21.

    Donoghue, P. J., Helquist, P., Norrby, P.-O. & Wiest, O. Prediction of enantioselectivity in rhodium catalyzed hydrogenations. J. Am. Chem. Soc. 131, 410–411 (2009).

    CAS  Article  Google Scholar 

  22. 22.

    Lime, E. et al. Stereoselectivity in asymmetric catalysis: the case of ruthenium-catalyzed ketone hydrogenation. J. Chem. Theory Comput. 10, 2427–2435 (2014).

    CAS  Article  Google Scholar 

  23. 23.

    Le, D. N. et al. Hydrogenation catalyst generates cyclic peptide stereocentres in sequence. Nat. Chem. 10, 968–973 (2018).

    CAS  Article  Google Scholar 

  24. 24.

    Norrby, P.-O., Brandt, P. & Rein, T. Rationalization of product selectivities in asymmetric Horner–Wadsworth–Emmons reactions by use of a new method for transition-state modeling. J. Org. Chem. 64, 5845–5852 (1999).

    CAS  Article  Google Scholar 

  25. 25.

    Rasmussen, T. & Norrby, P.-O. Modeling the stereoselectivity of the β-amino alcohol promoted addition of dialkylzinc to aldehydes. J. Am. Chem. Soc. 125, 5130–5138 (2003).

    CAS  Article  Google Scholar 

  26. 26.

    Lee, J. M. et al. Stereoselectivity in (acylox)borane-catalyzed Mukaiyama aldol reactions. J. Org. Chem. 81, 5314–5321 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Rydberg, P. et al. Transition-state docking of flunitrazepam and progesterone in cytochrome P450. J. Chem. Theory Comput. 4, 673–681 (2008).

    CAS  Article  Google Scholar 

  28. 28.

    Brown, D. G. & Boström, J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J. Med. Chem. 59, 4443–4458 (2016).

    CAS  Article  Google Scholar 

  29. 29.

    Allinger, N. L., Yuh, Y. H. & Lii, J.-H. Molecular mechanics. The MM3 force field for hydrocarbons. 1. J. Am. Chem. Soc. 111, 8551–8566 (1989).

    CAS  Article  Google Scholar 

  30. 30.

    Schrödinger Suite v.2017-2 (Schrödinger, 2017).

  31. 31.

    Chang, G., Guida, W. C. & Still, W. C. An internal-coordinate Monte Carlo method for searching conformational space. J. Am. Chem. Soc. 111, 4379–4386 (1989).

    CAS  Article  Google Scholar 

  32. 32.

    Kolossváry, I. & Guida, W. C. Low mode search. An efficient, automated computational method for conformational analysis: application to cyclic and acyclic alkanes and cyclic peptides. J. Am. Chem. Soc. 118, 5011–5019 (1996).

    Article  Google Scholar 

  33. 33.

    Scior, T. et al. Recognizing pitfalls in virtual screening: a critical review. J. Chem. Inf. Mod. 52, 867–881 (2012).

    CAS  Article  Google Scholar 

  34. 34.

    Warren, G. L. et al. A critical assessment of docking programs and scoring functions. J. Med. Chem. 49, 5912–5931 (2006).

    CAS  Article  Google Scholar 

Download references


This work was supported financially by NSF (CHE-1565669), NIH (T32 GM075762 and 1R01GM111645) and AstraZeneca. S. Tomasi, D. Buttar, and J. Westin at AstraZeneca are acknowledged for help with the CatVS web implementation.

Author information




E.H. and A.R.R. wrote the code, J.W. and E.L. performed calculations, R.H.M., R.M., K.W.L., R.S. and F.B. performed experiments. All authors designed the study, analyzed the data and contributed to the manuscript.

Corresponding authors

Correspondence to Rachel H. Munday or Olaf Wiest or Per-Ola Norrby.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–5, Supplementary Tables 1–4, Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rosales, A.R., Wahlers, J., Limé, E. et al. Rapid virtual screening of enantioselective catalysts using CatVS. Nat Catal 2, 41–45 (2019). https://doi.org/10.1038/s41929-018-0193-3

Download citation

Further reading


Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing