Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl2O4 catalysts

Abstract

Supported single atoms provide an opportunity to design new heterogeneous catalysts while optimizing the utilization of noble metals. However, identification of the active single-atom structure is required for understanding the reaction mechanism and guiding catalyst design. Here, we use in situ infrared spectroscopy, operando X-ray absorption spectroscopy and quantum chemical calculations to identify the active single-atom complex as well as the resting state of the Ir/MgAl2O4 catalysts during the low-temperature CO oxidation. In contrast to poisoning of iridium nanoparticles by CO, here we show that the formation of Ir(CO) on single atoms results in a different reaction mechanism and high activity for low-temperature CO oxidation. This is due to the ability of single atoms to coordinate with multiple ligands, where Ir(CO) provides an interfacial site for facile O2 activation between Ir and Al and lowers the reaction barrier between gas-phase CO(g) and *O in Ir(CO)(O) through an Eley–Rideal mechanism.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HAADF-STEM images of different Ir SAC and NP samples.
Fig. 2: CO oxidation kinetic measurements on Ir SAC, Ir NP and SAC+NP mixture.
Fig. 3: In situ infrared and operando HERFD-XANES spectra (experimental and DFT) of Ir single atoms.
Fig. 4: DFT-calculated free-energy diagram of CO oxidation on Ir single atoms supported on MgAl2O4.

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Oh, S. H. & Sinkevitch, R. M. Carbon monoxide removal from hydrogen-rich fuel cell feedstreams by selective catalytic oxidation. J. Catal. 142, 254–262 (1993).

    Article  CAS  Google Scholar 

  2. Alayoglu, S., Nilekar, A. U., Mavrikakis, M. & Eichhorn, B. Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater. 7, 333–338 (2008).

    Article  CAS  Google Scholar 

  3. Allian, A. D. et al. Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters. J. Am. Chem. Soc. 133, 4498–4517 (2011).

    Article  CAS  Google Scholar 

  4. Twigg, M. V. Progress and future challenges in controlling automotive exhaust gas emissions. Appl. Catal. B 70, 2–15 (2007).

    Article  CAS  Google Scholar 

  5. Lin, J. et al. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 135, 15314–15317 (2013).

    Article  CAS  Google Scholar 

  6. Yang, X. F. et al. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013).

    Article  CAS  Google Scholar 

  7. Lu, J., Serna, P., Aydin, C., Browning, N. D. & Gates, B. C. Supported molecular iridium catalysts: resolving effects of metal nuclearity and supports as ligands. J. Am. Chem. Soc. 133, 16186–16195 (2011).

    Article  CAS  Google Scholar 

  8. Kyriakou, G. et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 335, 1209–1212 (2012).

    Article  CAS  Google Scholar 

  9. Liu, J. Catalysis by supported single metal atoms. ACS Catal. 7, 34–59 (2017).

    Article  CAS  Google Scholar 

  10. Shan, J., Li, M., Allard, L. F., Lee, S. & Flytzani-Stephanopoulos, M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 551, 605–608 (2017).

    Article  CAS  Google Scholar 

  11. Cui, X., Li, W., Ryabchuk, P., Junge, K. & Beller, M. Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nat. Catal. 1, 385–397 (2018).

    Article  Google Scholar 

  12. Qiao, B. T. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).

    Article  CAS  Google Scholar 

  13. Moses-DeBusk, M. et al. CO oxidation on supported single Pt atoms: experimental and ab initio density functional studies of CO interaction with Pt atom on theta-Al2O3(010) surface. J. Am. Chem. Soc. 135, 12634–12645 (2013).

    Article  CAS  Google Scholar 

  14. Kistler, J. D. et al. A single-site platinum CO oxidation catalyst in zeolite KLTL: microscopic and spectroscopic determination of the locations of the platinum atoms. Angew. Chem. Int. Ed. 53, 8904–8907 (2014).

    Article  CAS  Google Scholar 

  15. Yang, M. et al. Catalytically active Au-O(OH)x-species stabilized by alkali ions on zeolites and mesoporous oxides. Science 346, 1498–1501 (2014).

    Article  CAS  Google Scholar 

  16. Yang, M. et al. A common single-site Pt(II)-O(OH)x- species stabilized by sodium on “active” and “inert” supports catalyzes the water-gas shift reaction. J. Am. Chem. Soc. 137, 3470–3473 (2015).

    Article  CAS  Google Scholar 

  17. Ding, K. et al. Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts. Science 350, 189–192 (2015).

    Article  CAS  Google Scholar 

  18. Jones, J. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353, 150–154 (2016).

    Article  CAS  Google Scholar 

  19. Stephens, I. E. L., Elias, J. S. & Shao-Horn, Y. The importance of being together. Science 350, 164–165 (2015).

    Article  CAS  Google Scholar 

  20. Nie, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 358, 1419–1423 (2017).

    Article  CAS  Google Scholar 

  21. Luo, J. Y. et al. Advantages of MgAlOx over gamma-Al2O3 as a support material for potassium-based high-temperature lean NOx traps. ACS Catal. 5, 4680–4689 (2015).

    Article  CAS  Google Scholar 

  22. Li, W.-Z. et al. A general mechanism for stabilizing the small sizes of precious metal nanoparticles on oxide supports. Chem. Mater. 26, 5475–5481 (2014).

    Article  CAS  Google Scholar 

  23. Li, W.-Z. et al. Stable platinum nanoparticles on specific MgAl2O4 spinel facets at high temperatures in oxidizing atmospheres. Nat. Commun. 4, 2481 (2013).

    Article  Google Scholar 

  24. Lin, J. et al. Design of a highly active Ir/Fe(OH)x catalyst: versatile application of Pt-group metals for the preferential oxidation of carbon monoxide. Angew. Chem. Int. Ed. 51, 2920–2924 (2012).

    Article  CAS  Google Scholar 

  25. Lu, J., Aydin, C., Browning, N. D. & Gates, B. C. Oxide- and zeolite-supported isostructural ir(C2H4)2 complexes: molecular-level observations of electronic effects of supports as ligands. Langmuir 28, 12806–12815 (2012).

    Article  CAS  Google Scholar 

  26. Hoffman, A. S. et al. High-energy-resolution X-ray absorption spectroscopy for identification of reactive surface species on supported single-site iridium catalysts. Chem. Eur. J. 23, 14760–14768 (2017).

    Article  CAS  Google Scholar 

  27. Aydin, C., Lu, J., Browning, N. D. & Gates, B. C. A “smart” catalyst: sinter-resistant supported iridium clusters visualized with electron microscopy. Angew. Chem. Int. Ed. 51, 5929–5934 (2012).

    Article  CAS  Google Scholar 

  28. Berlowitz, P. J., Peden, C. H. F. & Goodman, D. W. Kinetics of CO oxidation on single-crystal Pd, Pt, and Ir. J. Phys. Chem. 92, 5213–5221 (1988).

    Article  CAS  Google Scholar 

  29. Cargnello, M. et al. Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science 341, 771–773 (2013).

    Article  CAS  Google Scholar 

  30. Mihaylov, M. et al. New types of nonclassical iridium carbonyls formed in Ir-ZSM-5: a Fourier transform infrared spectroscopy investigation. J. Phys. Chem. B 110, 10383–10389 (2006).

    Article  CAS  Google Scholar 

  31. Wovchko, E. A. & Yates, J. T. Activation of O2 on a photochemically generated RhI site on an Al2O3 surface: low-temperature O2 dissociation and CO oxidation. J. Am. Chem. Soc. 120, 10523–10527 (1998).

    Article  CAS  Google Scholar 

  32. Abbet, S., Heiz, U., Hakkinen, H. & Landman, U. CO oxidation on a single Pd atom supported on magnesia. Phys. Rev. Lett. 86, 5950–5953 (2001).

    Article  CAS  Google Scholar 

  33. Atkins, A. J., Bauer, M. & Jacob, C. R. High-resolution X-ray absorption spectroscopy of iron carbonyl complexes. Phys. Chem. Chem. Phys. 17, 13937–13948 (2015).

    Article  CAS  Google Scholar 

  34. Boubnov, A. et al. Selective catalytic reduction of NO over Fe-ZSM-5: mechanistic insights by operando HERFD-XANES and valence-to-core X-ray emission spectroscopy. J. Am. Chem. Soc. 136, 13006–13015 (2014).

    Article  CAS  Google Scholar 

  35. van Bokhoven, J. A. et al. Activation of oxygen on gold/alumina catalysts: in situ high-energy-resolution fluorescence and time-resolved X-ray spectroscopy. Angew. Chem. Int. Ed. 45, 4651–4654 (2006).

    Article  CAS  Google Scholar 

  36. Safonova, O. V. et al. Identification of CO adsorption sites in supported Pt catalysts using high-energy-resolution fluorescence detection X-ray spectroscopy. J. Phys. Chem. B 110, 16162–16164 (2006).

    Article  CAS  Google Scholar 

  37. Cai, Q. X., Wang, J. G., Wang, Y. & Mei, D. H. First-principles thermodynamics study of spinel MgAl2O4 surface stability. J. Phys. Chem. C 120, 19087–19096 (2016).

    Article  CAS  Google Scholar 

  38. Ljungberg, M. P., Mortensen, J. J. & Pettersson, L. G. M. An implementation of core level spectroscopies in a real space projector augmented wave density functional theory code. J. Electron Spectrosc. 184, 427–439 (2011).

    Article  CAS  Google Scholar 

  39. Lu, J., Serna, P. & Gates, B. C. Zeolite- and MgO-supported molecular iridium complexes: support and ligand effects in catalysis of ethene hydrogenation and H–D exchange in the conversion of H2 + D2. ACS Catal. 1, 1549–1561 (2011).

    Article  CAS  Google Scholar 

  40. Yardimci, D., Serna, P. & Gates, B. C. Tuning catalytic selectivity: zeolite- and magnesium oxide-supported molecular rhodium catalysts for hydrogenation of 1,3-butadiene. ACS Catal. 2, 2100–2113 (2012).

    Article  CAS  Google Scholar 

  41. Sokaras, D. et al. A seven-crystal Johann-type hard X-ray spectrometer at the Stanford Synchrotron Radiation Lightsource. Rev. Sci. Instrum. 84, 053102 (2013).

    Article  CAS  Google Scholar 

  42. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron. Radiat. 12, 537–541 (2005).

    Article  CAS  Google Scholar 

  43. Newville, M. IFEFFIT: interactive XAFS analysis and FEFF fitting. J. Synchrotron. Radiat. 8, 322–324 (2001).

    Article  CAS  Google Scholar 

  44. Brooks, C. S. Characterization of iridium catalyst surfaces by gas chemisorption. J. Colloid Interface Sci. 34, 419–427 (1970).

    Article  CAS  Google Scholar 

  45. Bonet, F. et al. Kinetics of Heterogeneous Catalytic Reactions (Princeton Univ. Press, Princeton, NJ, 984).

  46. Koros, R. M. & Nowak, E. J. A diagnostic test of the kinetic regime in a packed bed reactor. Chem. Eng. Sci. 22, 470 (1967).

    Article  CAS  Google Scholar 

  47. Madon, R. J. & Boudart, M. Experimental criterion for the absence of artifacts in the measurement of rates of heterogeneous catalytic reactions. Ind. Eng. Chem. Fund. 21, 438–447 (1982).

    Article  CAS  Google Scholar 

  48. Mozaffari, S. et al. Colloidal nanoparticle size control: experimental and kinetic modeling investigation of the ligand metal binding role in controlling the nucleation and growth kinetics. Nanoscale 9, 13772–13785 (2017).

    Article  CAS  Google Scholar 

  49. Hutter, J., Iannuzzi, M., Schiffmann, F. & VandeVondele, J. CP2K: atomistic simulations of condensed matter systems. Wires Comput. Mol. Sci. 4, 15–25 (2014).

    Article  CAS  Google Scholar 

  50. Paier, J., Hirschl, R., Marsman, M. & Kresse, G. The Perdew–Burke–Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set. J. Chem. Phys. 122, 234102 (2005).

  51. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

  52. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was primarily sponsored by the Army Research Office and was accomplished under grant number W911NF-16-1-0400. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Office or the US Government. The US Government holds copyright license rights specified under the aforementioned grant. Additional support by SABIC (Saudi Basic Industries Corporation) and by the US Department of Energy (DOE) Office of Basic Energy Sciences to the SUNCAT Center for Interface Science and Catalysis is acknowledged. Use of the Stanford Synchrotron Radiation Light Source (SSRL, beamlines 6-2, user proposal 4645), SLAC National Accelerator Laboratory is supported by the US Department of Energy, Office of Basic Energy Sciences under contract no. DE-AC02-76SF00515. STEM imaging was performed at the William R. Wiley Environmental Molecular Science Laboratory (EMSL) sponsored by the US Department of Energy, Office of Biological and Environmental Research located at Pacific Northwest National Laboratory (PNNL) under science theme proposal 49326. Computing time was awarded at EMSL under the same proposal. L.Y. and H.X. acknowledge the partial financial support from the American Chemical Society Petroleum Research Fund (ACS PRF 55581-DNI5) and computational support from the Advanced Research Computing group at Virginia Polytechnic Institute and State University.

Author information

Authors and Affiliations

Authors

Contributions

Y.L. performed the synthesis, characterizations (including helping with HERFD) and catalytic tests and wrote the first draft of the paper. J.W. performed the DFT calculations for the reaction barriers and infrared frequencies. L.Y. performed the XANES DFT calculations. L.K. conducted the STEM analysis and contributed to the writing of the STEM section. X.Z. performed synthesis and catalytic reproducibility tests. A.S.H., A.G. and S.R.B. designed and performed the HERFD experiments and data analysis and contributed to writing the XAS section. D.S. and T.K. were responsible for optimizing the crystal optics, developing the scripts to allow the HERFD data to be collected, and monitoring the initial data quality. V.D. synthesized and characterized the 1% Ir/MgAl2O4 catalyst. H.X. designed and directed the computational part of the study and the writing of the DFT results. A.M.K. conceived the idea, and planned and directed the project. Y.L., H.X. and A.M.K. co-wrote the paper. All of the authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Hongliang Xin or Ayman M. Karim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion; Supplementary Figs 1-15; Supplementary Tables 1-10; Supplementary References

Supplementary Data Set

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Wang, J., Yu, L. et al. Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl2O4 catalysts. Nat Catal 2, 149–156 (2019). https://doi.org/10.1038/s41929-018-0192-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-018-0192-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing