The identification of catalytic intermediates in the conversion of carbon dioxide is vital for improved catalyst design and optimization of structure–reactivity relationships, but remains elusive. Here, we report that intermolecular hydrogen bonding interactions between an epoxy alcohol, water and the catalyst structure are crucial towards the formation of a cyclic carbonate from carbon dioxide. A combination of multiple in situ and ex situ techniques including substrate labelling, kinetic studies, computational analysis, operando infrared spectroscopy and X-ray diffraction was applied to identify and support the structural connectivities of several previously unknown intermediates. An epoxy alcohol–water cluster formed by hydrogen bonding was identified as the initial intermediate able to trap CO2 and an elusive alkyl carbonate anion was also detected. The synergistic spectroscopic and computational analysis shown here offers a unique insight under operando conditions, as well as a useful analytical blueprint for key suggested intermediates in other mechanistically related CO2 conversion processes.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

A data set of input files and computational results is available in the ioChem-BD repository57 and can be accessed via https://doi.org/10.19061/iochem-bd-1-58. The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request. CCDC 1850585 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Liu, Q., Wu, L., Jackstell, R. & Beller, M. Using carbon dioxide as a building block in organic synthesis. Nat. Commun. 6, 5933 (2015).

  2. 2.

    Wang, W.-H., Himeda, Y., Muckerman, J. T., Manbeck, G. F. & Fujita, E. CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem. Rev. 115, 12936–12973 (2015).

  3. 3.

    Wang, W., Wang, S., Ma, X. & Gong, J. Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev. 40, 3703–3727 (2011).

  4. 4.

    Artz, J. et al. Sustainable conversion of carbon dioxide: An integrated review of catalysis and life cycle assessment. Chem. Rev. 118, 434–504 (2018).

  5. 5.

    Álvarez, A. et al. CO2 activation over catalytic surfaces. ChemPhysChem 18, 3135–3141 (2017).

  6. 6.

    Decortes, A., Castilla, A. M. & Kleij, A. W. Salen-complex-mediated formation of cyclic carbonates by cycloaddition of CO2 to epoxides. Angew. Chem. Int. Ed. 49, 9822–9837 (2010).

  7. 7.

    Rintjema, J., Guo, W., Martin, E., Escudero-Adán, E. C. & Kleij, A. W. Highly chemo-selective catalytic coupling of substituted oxetanes and carbon dioxide. Chem. Eur. J. 21, 10754–10762 (2015).

  8. 8.

    Yang, Z.-Z., Li, Y.-N., Wei, Y.-Y. & He, L.-N. Protic onium salts-catalyzed synthesis of 5-aryl-2-oxazolidinones from aziridines and CO2 under mild conditions. Green Chem. 13, 2351–2353 (2011).

  9. 9.

    Whiteoak, C. J. et al. A powerful aluminum catalyst for the synthesis of highly functional organic carbonates. J. Am. Chem. Soc. 135, 1228–1231 (2013).

  10. 10.

    Yu, B. & He, L.-N. Upgrading carbon dioxide by incorporation into heterocycles. ChemSusChem 8, 52–62 (2015).

  11. 11.

    Minakata, S., Sasaki, I. & Ide, T. Atmospheric CO2 fixation by unsaturated alcohols using tBuOI under neutral conditions. Angew. Chem. Int. Ed. 49, 1309–1311 (2010).

  12. 12.

    Song, Q.-W., Zhou, Z.-H. & He, L.-N. Efficient, selective and sustainable catalysis of carbon dioxide. Green Chem. 19, 3707–3728 (2017).

  13. 13.

    Vara, B. A., Struble, T. J., Wang, W., Dobish, M. & Johnston, J. N. Enantioselective small molecule synthesis by carbon dioxide fixation using a dual Brønsted acid/base organocatalyst. J. Am. Chem. Soc. 137, 7302–7305 (2015).

  14. 14.

    Song, Q.-W. & He, L.-N. Robust silver(I) catalyst for the carboxylative cyclization of propargylic alcohols with carbon dioxide under ambient conditions. Adv. Synth. Catal. 358, 1251–1258 (2016).

  15. 15.

    Yoshida, S., Fukui, K., Kikuchi, S. & Yamada, T. Silver-catalyzed enantioselective carbon dioxide incorporation into bispropargylic alcohols. J. Am. Chem. Soc. 132, 4072 (2010).

  16. 16.

    Martín, C., Fiorani, G. & Kleij, A. W. Recent advances in the catalytic preparation of cyclic organic carbonates. ACS Catal. 5, 1353–1370 (2015).

  17. 17.

    Shaikh, R. R., Pornpraprom, S. & D’Elia, V. Catalytic strategies for the cycloaddition of pure, diluted, and waste CO2 to epoxides under ambient conditions. ACS Catal. 8, 419–450 (2018).

  18. 18.

    Comerford, J. W., Ingram, I. D. V., North, M. & Wu, X. Sustainable metal-based catalysts for the synthesis of cyclic carbonates containing five-membered rings. Green Chem. 17, 1966–1987 (2015).

  19. 19.

    Ishida, N., Shimamoto, Y. & Murakami, M. Solar-driven incorporation of carbon dioxide into α-amino ketones. Angew. Chem. Int. Ed. 51, 11750–11752 (2012).

  20. 20.

    Rintjema, J. & Kleij, A. W. Substrate-assisted carbon dioxide activation as a versatile approach for heterocyclic synthesis. Synthesis 48, 3863–3878 (2016).

  21. 21.

    Aida, T. & Inoue, S. Activation of carbon dioxide with aluminum porphyrin and reaction with epoxide. Studies on (tetraphenylporphinato)aluminum alkoxide having a long oxyalkylene chain as the alkoxide group. J. Am. Chem. Soc. 105, 1304–1309 (1983).

  22. 22.

    Kojima, F., Aida, T. & Inoue, S. Fixation and activation of carbon dioxide on aluminum porphyrin. Catalytic formation of a carbamic ester from carbon dioxide, amine, and epoxide. J. Am. Chem. Soc. 108, 391–395 (1986).

  23. 23.

    Castro Osma, J. A., North, M., Offermans, W. K., Leitner, W. & Müller, T. E. Unprecedented carbonato intermediates in cyclic carbonate synthesis catalysed by bimetallic aluminium(salen) complexes. ChemSusChem 9, 791–794 (2016).

  24. 24.

    Rintjema, J. et al. Substrate controlled product divergence in CO2 conversion to heterocyclic products. Angew. Chem. Int. Ed. 55, 3972–3976 (2016).

  25. 25.

    Laserna, V., Martin, E., Escudero-Adán, E. C. & Kleij, A. W. Substrate-triggered stereoselective preparation of highly substituted organic carbonates. ACS Catal. 7, 5478–5482 (2017).

  26. 26.

    Dibenedetto, A. et al. On the existence of the elusive monomethyl ester of carbonic acid [CH3OC(O)OH] at 300 K: 1H and 13C NMR measurements and DFT calculations. Eur. J. Inorg. Chem. 2006, 908–913 (2006).

  27. 27.

    Heldebrant, D. J., Jessop, P. G., Thomas, C. A., Eckert, C. A. & Liotta, C. L. The reaction of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) with carbon dioxide. J. Org. Chem. 70, 5335–5338 (2005).

  28. 28.

    West, K. N. et al. In situ formation of alkylcarbonic acids with CO2. J. Phys. Chem. A 105, 3947–3948 (2001).

  29. 29.

    Gassensmith, J. J. et al. Strong and reversible binding of carbon dioxide in a green metal–organic framework. J. Am. Chem. Soc. 133, 15312–15315 (2011).

  30. 30.

    Jessop, P. G., Heldebrant, D. J., Li, X., Eckert, C. A. & Liotta, C. L. Green chemistry: Reversible nonpolar-to-polar solvent. Nature 436, 1102–1102 (2005).

  31. 31.

    McDonald, T. M. et al. Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature 519, 303–308 (2015).

  32. 32.

    Whiteoak, C. J., Nova, A., Maseras, F. & Kleij, A. W. Merging sustainability with organocatalysis in the formation of organic carbonates by using CO2 as a feedstock. ChemSusChem 5, 2032–2038 (2012).

  33. 33.

    Gennen, S. et al. Fluorinated alcohols as activators for the solvent-free chemical fixation of carbon dioxide into epoxides. ChemSusChem 8, 1845–1849 (2015).

  34. 34.

    Sopeña, S., Martín, E., Escudero-Adán, E. C. & Kleij, A. W. Pushing the limits with squaramide-based organocatalysts in cyclic carbonate synthesis. ACS Catal. 7, 3532–3539 (2017).

  35. 35.

    Toda, Y., Komiyama, Y., Kikuchi, A. & Suga, H. Tetraarylphosphonium salt-catalyzed carbon dioxide fixation at atmospheric pressure for the synthesis of cyclic carbonates. ACS Catal. 6, 6906–6910 (2016).

  36. 36.

    Della Monica, F., Buonerba, A., Grassi, A., Capacchione, C. & Milione, S. Glycidol: an hydroxyl-containing epoxide playing the double role of substrate and catalyst for CO2 cycloaddition reactions. ChemSusChem 9, 3457–3464 (2016).

  37. 37.

    Vilotijevic, I. & Jamison, T. F. Epoxide-opening cascades promoted by water. Science 317, 1189–1192 (2007).

  38. 38.

    Morten, C. J., Byers, J. A. & Jamison, T. F. Evidence that epoxide-opening cascades promoted by water are stepwise and become faster and more selective after the first cyclization. J. Am. Chem. Soc. 133, 1902–1908 (2011).

  39. 39.

    Xia, Y. et al. An unexpected role of a trace amount of water in catalyzing proton transfer in phosphine-catalyzed (3 + 2) cycloaddition of allenoates and alkenes. J. Am. Chem. Soc. 129, 3470–3471 (2007).

  40. 40.

    Yu, J. S., Liu, Y. L., Tang, J., Wang, X. & Zhou, J. Highly efficient “on water” catalyst-free nucleophilic addition reactions using difluoroenoxysilanes: dramatic fluorine effects. Angew. Chem. Int. Ed. 53, 9512–9516 (2014).

  41. 41.

    Shin, J. W. et al. Infrared signature of structures associated with the H+(H2O)n (n = 6 to 27) clusters. Science 304, 1137–1140 (2004).

  42. 42.

    Miyazaki, M., Fujii, A., Ebata, T. & Mikami, N. Infrared spectroscopic evidence for protonated water clusters forming nanoscale cages. Science 304, 1134–1137 (2004).

  43. 43.

    Garczarek, F. & Gerwert, K. Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy. Nature 439, 109–112 (2006).

  44. 44.

    Seo, J., Warnke, S., Pagel, K., Bowers, M. T. & von Helden, G. Infrared spectrum and structure of the homochiral serine octamer–dichloride complex. Nat. Chem. 9, 1263–1268 (2017).

  45. 45.

    Baker, M. J. et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat. Protoc. 9, 1771–1791 (2014).

  46. 46.

    Adato, R. & Altug, H. In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas. Nat. Commun. 4, 2154 (2013).

  47. 47.

    Yang, G. & Xu, Y. Probing chiral solute-water hydrogen bonding networks by chirality transfer effects: A vibrational circular dichroism study of glycidol in water. J. Chem. Phys. 130, 164506 (2009).

  48. 48.

    Conrad, A. R., Teumelsan, N. H., Wang, P. E. & Tubergen, M. J. A spectroscopic and computational investigation of the conformational structural changes induced by hydrogen bonding networks in the glycidol−water complex. J. Phys. Chem. A 114, 336–342 (2010).

  49. 49.

    Cano, I., Chapman, A. M., Urakawa, A. & van Leeuwen, P. W. N. M. Air-stable gold nanoparticles ligated by secondary phosphine oxides for the chemoselective hydrogenation of aldehydes: crucial role of the ligand. J. Am. Chem. Soc. 136, 2520–2528 (2014).

  50. 50.

    Urakawa, A., Jutz, F., Laurenczy, G. & Baiker, A. Carbon dioxide hydrogenation catalyzed by a ruthenium dihydride: a DFT and high-pressure spectroscopic investigation. Chem. Eur. J. 13, 3886–3899 (2007).

  51. 51.

    Ema, T. et al. Quaternary ammonium hydroxide as a metal-free and halogen-free catalyst for the synthesis of cyclic carbonates from epoxides and carbon dioxide. Catal. Sci. Technol. 5, 2314–2321 (2015).

  52. 52.

    Whiteoak, C. J. et al. Highly active aluminium catalysts for the formation of organic carbonates from CO2 and oxiranes. Chem. Eur. J. 20, 2264–2275 (2014).

  53. 53.

    North, M. & Pasquale, R. Mechanism of cyclic carbonate synthesis from epoxides and CO2. Angew. Chem. Int. Ed. 48, 2946–2948 (2009).

  54. 54.

    Darensbourg, D. J. & Yarbrough, J. C. Mechanistic aspects of the copolymerization reaction of carbon dioxide and epoxides using a chiral salen chromium chloride catalyst. J. Am. Chem. Soc. 124, 6335–6342 (2002).

  55. 55.

    Darensbourg, D. J., Yarbrough, J. C., Ortiz, C. & Fang, C. C. Comparative kinetic studies of the copolymerization of cyclohexene oxide and propylene oxide with carbon dioxide in the presence of chromium salen derivatives. In situ FTIR measurements of copolymer vs cyclic carbonate production. J. Am. Chem. Soc. 125, 7586–7591 (2003).

  56. 56.

    Garand, E. et al. Infrared spectroscopy of hydrated bicarbonate anion clusters: HCO3 (H2O)1−10. J. Am. Chem. Soc. 132, 849–856 (2010).

  57. 57.

    Álvarez-Moreno, M. et al. Managing the computational chemistry big data problem: the ioChem-BD platform. J. Chem. Inf. Model. 55, 95–103 (2015).

Download references


The authors acknowledge financial support by ICIQ, ICREA, the CERCA Program/Generalitat de Catalunya and the Spanish Ministerio de Economıa y Competitividad (MINECO: CTQ2012-34153, CTQ2017-88920-P and CTQ2016-75499-R (AEI/FEDER-UE), and Severo Ochoa Excellence Accreditation 2014−2018, SEV-2013-0319). R.H. thanks the COFUND postdoctoral programme of the EU. The Research Support Area of ICIQ is also thanked for their experimental assistance.

Author information

Author notes

  1. These authors contributed equally: Rui Huang, Jeroen Rintjema.


  1. Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Tarragona, Spain

    • Rui Huang
    • , Jeroen Rintjema
    • , Joan González-Fabra
    • , Eddy Martín
    • , Eduardo C. Escudero-Adán
    • , Carles Bo
    • , Atsushi Urakawa
    •  & Arjan W. Kleij
  2. Departament de Química Física i Inorgánica, Universitat Rovira, i Virgili, Marcel-li Domingo, Tarragona, Spain

    • Carles Bo
  3. Catalan Institute of Research and Advanced Studies (ICREA) , Barcelona, Spain

    • Arjan W. Kleij


  1. Search for Rui Huang in:

  2. Search for Jeroen Rintjema in:

  3. Search for Joan González-Fabra in:

  4. Search for Eddy Martín in:

  5. Search for Eduardo C. Escudero-Adán in:

  6. Search for Carles Bo in:

  7. Search for Atsushi Urakawa in:

  8. Search for Arjan W. Kleij in:


A.W.K. and A.U. conceived of the project. R.H. and J.R. (equal contribution) carried out both the spectroscopic measurements and the catalytic experiments, as well as the manuscript preparation. J.G.F. and C.B. performed DFT calculations. E.M. and E.C.E-A. helped with X-ray analysis. All authors contributed to scientific discussion and revised the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Carles Bo or Atsushi Urakawa or Arjan W. Kleij.

Supplementary information

  1. Supplementary Information

    Supplementary Methods, Supplementary Discussion, Supplementary Figures 1–9, Supplementary Tables 1–5, Supplementary References

  2. AlGLYL

    Crystallographic data for AlGLYL complex

  3. Supplementary Video 1

    The simulated IR vibrational model of the phenolic C–O stretching band of the ligand part in the aluminum catalyst (AlTHFL) corresponding to peak 1 in Fig. 4

  4. Supplementary Video 2

    The simulated IR vibrational model of the C‒N stretching band of the ligand part in the aluminum catalyst (AlTHFL) corresponding to peak 2 in Fig. 4

  5. Supplementary Video 3

    The simulated IR vibrational model of the C‒O‒C stretching band of the THF ligand in the aluminum catalyst (AlTHFL) corresponding to peak 3 in Fig. 4

  6. Supplementary Video 4

    The simulated IR vibrational model of the phenolic O‒Al stretching band in the aluminum catalyst (AlTHFL) corresponding to peak 4 in Fig. 4

  7. Supplementary Video 5

    The simulated IR vibrational model of the O‒Al stretching band of the THF ligand in the aluminum catalyst (AlTHFL) corresponding to peak 5 in Fig. 4

  8. Supplementary Video 6

    The simulated IR vibrational model of the typical aromatic C–H band of the ligand part in the aluminum catalyst (AlTHFL) corresponding to peak 6 in Fig. 4

About this article

Publication history