Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Versatile and robust C–C activation by chelation-assisted manganese catalysis

Abstract

C–H activation has been recognized as an increasingly viable tool in molecular sciences, but organometallic C–C activation is scarce, and limited to precious and toxic metal catalysts. Herein, we disclose versatile C–C activations by a robust base-metal catalyst in water. Thus, an inexpensive manganese(i) catalyst enabled C–C functionalizations with excellent levels of chemo- and position-selectivities, setting the stage for versatile C–C allylations, C–C alkenylations and C–C alkylations in water. The manganese(i) catalyst outperformed commonly used copper, iron, palladium, rhodium and ruthenium complexes, and the C–C activations occurred on steroid and amino acid motifs. Detailed kinetic and computational studies provided strong support for a kinetically relevant C–C manganesation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Manganese-catalysed C–C activation.
Fig. 2: Substitution pattern effect towards effective C–C cleavage.
Fig. 3: Robustness of the C–C activation.
Fig. 4: Versatility of the C–C alkylation.
Fig. 5: Position-selective manganese(i)-catalysed C–C activation highlighting unique benefits over C–H activation.
Fig. 6: Key mechanistic findings of C–C activation in water.
Fig. 7: Detailed spectroscopic, spectrometric and kinetic analysis of the manganese(i)-catalysed C–C activation.
Fig. 8: Computational density functional theory (DFT) studies, rationalizing the C–C activation mode of action.

Similar content being viewed by others

Data availability

The X-ray crystallographic coordinates for the structure of compound C’ have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition number 1871580. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. All data is also available from the authors upon reasonable request.

References

  1. Davies, H. M. L. & Manning, J. R. Catalytic C–H functionalization by metal carbenoid and nitrenoid insertion. Nature 451, 417–424 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bergman, R. G. Organometallic chemistry: C–H activation. Nature 446, 391–393 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Gandeepan, P. & Ackermann, L. Transient directing groups for transformative C–H activation by synergistic metal catalysis. Chem 4, 199–222 (2018).

    Article  CAS  Google Scholar 

  4. He, J., Wasa, M., Chan, K. S. L., Shao, Q. & Yu, J.-Q. Palladium-catalyzed transformations of alkyl C–H bonds. Chem. Rev. 117, 8754–8786 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Fumagalli, G., Stanton, S. & Bower, J. F. Recent methodologies that exploit C–C single-bond cleavage of strained ring systems by transition metal complexes. Chem. Rev. 117, 9404–9432 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Chen, P. H., Billett, B. A., Tsukamoto, T. & Dong, G. “Cut and sew” transformations via transition-metal-catalyzed carbon–carbon bond activation. ACS Catal. 7, 1340–1360 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Murakami, M. & Ishida, N. Potential of metal-catalyzed C–C single bond cleavage for organic synthesis. J. Am. Chem. Soc. 138, 13759–13769 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Nairoukh, Z., Cormier, M. & Marek, I. Merging C–H and C–C bond cleavage in organic synthesis. Nat. Rev. Chem. 1, 0035 (2017).

    Article  CAS  Google Scholar 

  9. Souillart, L. & Cramer, N. Catalytic C–C bond activations via oxidative addition to transition metals. Chem. Rev. 115, 9410–9464 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Chen, F., Wang, T. & Jiao, N. Recent advances in transition-metal-catalyzed functionalization of unstrained carbon–carbon bonds. Chem. Rev. 114, 8613–8661 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Murakami, M. & Matsuda, T. Metal-catalysed cleavage of carbon–carbon bonds. Chem. Commun. 47, 1100–1105 (2011).

    Article  CAS  Google Scholar 

  12. Jun, C.-H. Transition metal-catalyzed carbon–carbon bond activation. Chem. Soc. Rev. 33, 610–618 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Okumura, S., Sun, F., Ishida, N. & Murakami, M. Palladium-catalyzed intermolecular exchange between C–C and C–Si σ-bonds. J. Am. Chem. Soc. 139, 12414–12417 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Ishida, N., Sawano, S. & Murakami, M. Stereospecific ring expansion from orthocyclophanes with central chirality to metacyclophanes with planar chirality. Nat. Commun. 5, 3111 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Murakami, M., Ashida, S. & Matsuda, T. Nickel-catalyzed intermolecular alkyne insertion into cyclobutanones. J. Am. Chem. Soc. 127, 6932–6933 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Murakami, M., Amii, H., Shigeto, K. & Ito, Y. Breaking of the C–C bond of cyclobutanones by rhodium(i) and its extension to catalytic synthetic reactions. J. Am. Chem. Soc. 118, 8285–8290 (1996).

    Article  CAS  Google Scholar 

  17. Murakami, M., Amii, H. & Ito, Y. Selective activation of carbon–carbon bonds next to a carbonyl group. Nature 370, 540–541 (1994).

    Article  CAS  Google Scholar 

  18. Wang, G. W., McCreanor, N. G., Shaw, M. H., Whittingham, W. G. & Bower, J. F. New initiation modes for directed carbonylative C–C bond activation: rhodium-catalyzed (3 + 1 + 2) cycloadditions of aminomethylcyclopropanes. J. Am. Chem. Soc. 138, 13501–13504 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Shaw, M. H., Melikhova, E. Y., Kloer, D. P., Whittingham, W. G. & Bower, J. F. Directing group enhanced carbonylative ring expansions of amino-substituted cyclopropanes: rhodium-catalyzed multicomponent synthesis of N-heterobicyclic enones. J. Am. Chem. Soc. 135, 4992–4995 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Xia, Y., Lu, G., Liu, P. & Dong, G. Catalytic activation of carbon–carbon bonds in cyclopentanones. Nature 539, 546–550 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Deng, L., Xu, T., Li, H. & Dong, G. Enantioselective Rh-catalyzed carboacylation of C═N bonds via C–C activation of benzocyclobutenones. J. Am. Chem. Soc. 138, 369–374 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Xu, T. & Dong, G. Rhodium-catalyzed regioselective carboacylation of olefins: a C–C bond activation approach for accessing fused-ring systems. Angew. Chem. Int. Ed. 51, 7567–7571 (2012).

    Article  CAS  Google Scholar 

  23. Ozkal, E., Cacherat, B. & Morandi, B. Cobalt(iii)-catalyzed functionalization of unstrained carbon–carbon bonds through β-carbon cleavage of alcohols. ACS Catal. 5, 6458–6462 (2015).

    Article  CAS  Google Scholar 

  24. Yoichiro, K., Tadamasa, U., Atsushi, K. & Kazuhiko, T. Manganese-catalyzed cleavage of a carbon–carbon single bond between carbonyl carbon and α-carbon atoms of ketones. Angew. Chem. Int. Ed. 50, 10406–10408 (2011).

    Article  CAS  Google Scholar 

  25. Yasunori, M., Hirofumi, Y., Yoshiaki, N. & Tamejiro, H. Highly chemoselective carbon–carbon σ-bond activation: nickel/Lewis acid catalyzed polyfluoroarylcyanation of alkynes. Angew. Chem. Int. Ed. 52, 883–887 (2013).

    Article  CAS  Google Scholar 

  26. Masahiro, S., Hideki, Y. & Koichiro, O. Allyl-, allenyl-, and propargyl-transfer reactions through cleavage of C–C bonds catalyzed by an N-heterocyclic carbene/copper complex: synthesis of multisubstituted pyrroles. Angew. Chem. Int. Ed. 50, 3294–3298 (2011).

    Article  CAS  Google Scholar 

  27. Lei, Z.-Q. et al. Extrusion of CO from aryl ketones: rhodium(i)-catalyzed C–C bond cleavage directed by a pyridine group. Angew. Chem. Int. Ed. 51, 2690–2694 (2012).

    Article  CAS  Google Scholar 

  28. Li, H. et al. Pyridinyl directed alkenylation with olefins via Rh(iii)-catalyzed C–C bond cleavage of secondary arylmethanols. J. Am. Chem. Soc. 133, 15244–15247 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Gooßen, L. J., Deng, G. & Levy, L. M. Synthesis of biaryls via catalytic decarboxzlative coupling. Science 313, 662–664 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Okazawa, T., Satoh, T., Miura, M. & Nomura, M. Palladium-catalyzed multiple arylation of thiophenes. J. Am. Chem. Soc. 124, 5286–5287 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Egorova, K. S. & Ananikov, V. P. Which metals are green for catalysis? Comparison of the toxicities of Ni, Cu, Fe, Pd, Pt, Rh, and Au salts. Angew. Chem. Int. Ed. 55, 12150–12162 (2016).

    Article  CAS  Google Scholar 

  32. Moselage, M., Li, J., Kramm, F. & Ackermann, L. Ruthenium(ii)-catalyzed C–C arylations and alkylations: decarbamoylative C–C functionalizations. Angew. Chem. Int. Ed. 56, 5341–5344 (2017).

    Article  CAS  Google Scholar 

  33. Kumar, N. Y. P., Bechtoldt, A., Raghuvanshi, K. & Ackermann, L. Ruthenium(ii)-catalyzed decarboxylative C–H activation: versatile routes to meta-alkenylated arenes. Angew. Chem. Int. Ed. 55, 6929–6932 (2016).

    Article  CAS  Google Scholar 

  34. Egorova, K. S. & Ananikov, V. P. Toxicity of metal compounds: knowledge and myths. Organometallics 36, 4071–4090 (2017).

    Article  CAS  Google Scholar 

  35. Cahiez, G., Duplais, C. & Buendia, J. Chemistry of organomanganese(ii) compounds. Chem. Rev. 109, 1434–1476 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Zhou, B., Chen, H. & Wang, C. Mn-catalyzed aromatic C–H alkenylation with terminal alkynes. J. Am. Chem. Soc. 135, 1264–1267 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Lu, Q., Klauck, F. J. R. & Glorius, F. Manganese-catalyzed allylation via sequential C–H and C–C/C–Het bond activation. Chem. Sci. 8, 3379–3383 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu, W. & Ackermann, L. Manganese-catalyzed C–H activation. ACS Catal. 6, 3743–3752 (2016).

    Article  CAS  Google Scholar 

  39. Wang, C. Manganese-mediated C–C bond formation via C–H activation: from stoichiometry to catalysis. Synlett. 24, 1606–1613 (2013).

    Article  CAS  Google Scholar 

  40. Wang, H., Lorion, M. M. & Ackermann, L. Air-stable manganese(i)-catalyzed C–H activation for decarboxylative C–H/C–O cleavages in water. Angew. Chem. Int. Ed. 56, 6339–6342 (2017).

    Article  CAS  Google Scholar 

  41. Zhou, B., Hu, Y., Liu, T. & Wang, C. Aromatic C–H addition of ketones to imines enabled by manganese catalysis. Nat. Commun. 8, 1169 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Butler, R. N. & Coyne, A. G. Water: nature’s reaction enforcer–comparative effects for organic synthesis “in-water” and “on-water”. Chem. Rev. 110, 6302–6337 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999).

    Article  CAS  Google Scholar 

  44. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Chem. Phys. B 113, 6378–6396 (2009).

    Article  CAS  Google Scholar 

  48. Kozuch, S. & Shaik, S. How to conceptualize catalytic cycles? The energetic span model. Acc. Chem. Res. 44, 101–110 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Boda, M. & Naresh Patwari, G. Insights into acid dissociation of HCl and HBr with internal electric fields. Phys. Chem. Chem. Phys. 19, 7461–7464 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Blakemore, D. C. et al. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 10, 383–394 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Generous support by the DFG (SPP 1807), the CSC (fellowship to H.W.), the KEF (fellowship to I.C.) and the Onassis Foundation (fellowship to N.K.) is gratefully acknowledged. We also thank C. Golz (Göttingen University) for the X-ray diffraction analysis.

Author information

Authors and Affiliations

Authors

Contributions

H.W. developed the manganese-catalysed C–C activation. H.W., I.C. and N.K. identified the substrate scope. H.W., I.C. and T.R. conducted the mechanistic investigations. T.R. performed the computational studies. L.A. conceived and supervised the project. L.A. prepared the manuscript.

Corresponding author

Correspondence to Lutz Ackermann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Tables 1–4, Supplementary Figures 1–6, Supplementary References

Supplementary Data 1

Cartesian coordinates and energies

Compound C′

Crystallographic data for compound C′

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Choi, I., Rogge, T. et al. Versatile and robust C–C activation by chelation-assisted manganese catalysis. Nat Catal 1, 993–1001 (2018). https://doi.org/10.1038/s41929-018-0187-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-018-0187-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing