Review Article | Published:

Characteristics and performance of two-dimensional materials for electrocatalysis

Nature Catalysisvolume 1pages909921 (2018) | Download Citation


The unique anisotropy and electronic properties of 2D materials have sparked immense interest in their fundamental electrochemistry and wide spectrum of applications. Beginning with the prototype 2D material — graphene — studies into an extensive library of other ultrathin layered structures have gradually emerged. Among these are the transition metal dichalcogenides, layered double hydroxides, metal carbides and nitrides (MXenes) and the black phosphorus family of monoelemental compounds. In this Review, we discuss the similarities of these 2D materials and highlight differences in their electrochemical and electrocatalytic properties. Recent progress on 2D materials for energy-related electrocatalysis in industrially important reactions is presented. Together this shows that dimensionality and surface characteristics are both vital aspects to consider when designing and fabricating compounds to achieve desired properties in specific applications.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

  2. 2.

    Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 9, 9451–9469 (2015).

  3. 3.

    Xu, M., Liang, T., Shi, M. & Chen, H. Graphene-like two-dimensional materials. Chem. Rev. 113, 3766–3798 (2013).

  4. 4.

    Chia, X., Eng, A. Y. S., Ambrosi, A., Tan, S. M. & Pumera, M. Electrochemistry of nanostructured layered transition-metal dichalcogenides. Chem. Rev. 115, 11941–11966 (2015).

  5. 5.

    Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).

  6. 6.

    Carvalho, A. et al. Phosphorene: from theory to applications. Nat. Rev. Mater. 1, 16061 (2016).

  7. 7.

    Pumera, M. & Sofer, Z. 2D monoelemental arsenene, antimonene, and bismuthene: beyond black phosphorus. Adv. Mater. 29, 1605299 (2017).

  8. 8.

    Jin, H. et al. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 118, 6337–6408 (2018).

  9. 9.

    Wang, Y., Wang, X. & Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Ed. 51, 68–89 (2012).

  10. 10.

    Ambrosi, A., Chua, C. K., Bonanni, A. & Pumera, M. Electrochemistry of graphene and related materials. Chem. Rev. 114, 7150–7188 (2014).

  11. 11.

    Py, M. A. & Haering, R. R. Structural destabilization induced by lithium intercalation in MoS2 and related compounds. Can. J. Phys. 61, 76–84 (1983).

  12. 12.

    Wilson, J. A. & Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18, 193–335 (1969).

  13. 13.

    Chia, X., Sutrisnoh, N. A. A., Sofer, Z., Luxa, J. & Pumera, M. Morphological effects and stabilization of the metallic 1T phase in layered V-, Nb-, and Ta-Doped WSe2 for electrocatalysis. Chem. Eur. J. 24, 3199–3208 (2018).

  14. 14.

    Enyashin, A. N. et al. New route for stabilization of 1T-WS2 and MoS2 phases. J. Phys. Chem. C 115, 24586–24591 (2011).

  15. 15.

    Tang, Q. & Jiang, D.-E. Stabilization and band-gap tuning of the 1T-MoS2 monolayer by covalent functionalization. Chem. Mater. 27, 3743–3748 (2015).

  16. 16.

    Cavani, F., Trifirò, F. & Vaccari, A. Hydrotalcite-type anionic clays: preparation, properties and applications. Catal. Today 11, 173–301 (1991).

  17. 17.

    Miller, T. S. et al. Carbon nitrides: synthesis and characterization of a new class of functional materials. Phys. Chem. Chem. Phys. 19, 15613–15638 (2017).

  18. 18.

    Naguib, M. et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011).

  19. 19.

    Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).

  20. 20.

    Zhang, Q. et al. MoS2 yolk–shell microspheres with a hierarchical porous structure for efficient hydrogen evolution. Nano Res. 9, 3038–3047 (2016).

  21. 21.

    Mashtalir, O. et al. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716 (2013).

  22. 22.

    Chua, C. K., Sofer, Z. & Pumera, M. Graphite oxides: effects of permanganate and chlorate oxidants on the oxygen composition. Chem. Eur. J. 18, 13453–13459 (2012).

  23. 23.

    Zhou, M. et al. Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem. Eur. J. 15, 6116–6120 (2009).

  24. 24.

    Bonde, J., Moses, P. G., Jaramillo, T. F., Norskov, J. K. & Chorkendorff, I. Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss. 140, 219–231 (2009).

  25. 25.

    Chia, X., Ambrosi, A., Sofer, Z., Luxa, J. & Pumera, M. Catalytic and charge transfer properties of transition metal dichalcogenides arising from electrochemical pretreatment. ACS Nano 9, 5164–5179 (2015). Illustrates the electrotreatment method of tuning the heterogeneous electron transfer properties of the layered transition metal dichalcogenides whereby a reductive treatment accelerates the electron transfer rate while an oxidation hinders the electron transfer.

  26. 26.

    Eng, A. Y. S., Ambrosi, A., Sofer, Z., Šimek, P. & Pumera, M. Electrochemistry of transition metal dichalcogenides: strong dependence on the metal-to-chalcogen composition and exfoliation method. ACS Nano 8, 12185–12198 (2014).

  27. 27.

    Tan, S. M., Sofer, Z., Luxa, J. & Pumera, M. Aromatic-exfoliated transition metal dichalcogenides: implications for inherent electrochemistry and hydrogen evolution. ACS Catal. 6, 4594–46071 (2016).

  28. 28.

    Luxa, J. et al. Layered transition-metal ditellurides in electrocatalytic applications—contrasting properties. ACS Catal. 7, 5706–5716 (2017).

  29. 29.

    Jaegermann, W. & Schmeisser, D. Reactivity of layer type transition metal chalcogenides towards oxidation. Surf. Sci. 165, 143–160 (1986).

  30. 30.

    Kautek, W. & Gerischer, H. Anisotropic photocorrosion of n-type MoS2, MoSe2, and WSe2 single crystal surfaces: the role of cleavage steps, line and screw dislocations. Surf. Sci. 119, 46–60 (1982).

  31. 31.

    Gholamvand, Z. et al. Comparison of liquid exfoliated transition metal dichalcogenides reveals MoSe2 to be the most effective hydrogen evolution catalyst. Nanoscale 8, 5737–5749 (2016).

  32. 32.

    Chia, X. et al. Layered platinum dichalcogenides (PtS2, PtSe2, and PtTe2) electrocatalysis: monotonic dependence on the chalcogen size. Adv. Funct. Mater. 26, 4306–4318 (2016).

  33. 33.

    Chia, X., Ambrosi, A., Lazar, P., Sofer, Z. & Pumera, M. Electrocatalysis of layered group 5 metallic transition metal dichalcogenides (MX2, M = V, Nb, and Ta; X = S, Se, and Te). J. Mater. Chem. A 4, 14241–14253 (2016).

  34. 34.

    Wang, L., Sofer, Z. & Pumera, M. Voltammetry of layered black phosphorus: electrochemistry of multilayer phosphorene. ChemElectroChem 2, 324–327 (2015).

  35. 35.

    Favron, A. et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14, 826–832 (2015).

  36. 36.

    Gusmão, R., Sofer, Z., Bouša, D. & Pumera, M. Pnictogen (As, Sb, Bi) nanosheets for electrochemical applications are produced by shear exfoliation using kitchen blenders. Angew. Chem. Int. Ed. 56, 14417–14422 (2017).

  37. 37.

    Fu, Y., Zhu, J., Hu, C., Wu, X. & Wang, X. Covalently coupled hybrid of graphitic carbon nitride with reduced graphene oxide as a superior performance lithium-ion battery anode. Nanoscale 6, 12555–12564 (2014).

  38. 38.

    Yew, Y. T. et al. Electrochemistry of layered graphitic carbon nitride synthesised from various precursors: searching for catalytic effects. ChemPhysChem 17, 481–488 (2016).

  39. 39.

    Lorencova, L. et al. Electrochemical performance of Ti3C2Tx MXene in aqueous media: towards ultrasensitive H2O2 sensing. Electrochim. Acta 235, 471–479 (2017).

  40. 40.

    Davies, T. J., Hyde, M. E. & Compton, R. G. Nanotrench arrays reveal insight into graphite electrochemistry. Angew. Chem. Int. Ed. 44, 5121–5126 (2005).

  41. 41.

    Yuan, W. et al. The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet. Sci. Rep. 3, 2248 (2013).

  42. 42.

    McCreery, R. L. Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 108, 2646–2687 (2008).

  43. 43.

    Tan, C. et al. Reactivity of monolayer chemical vapor deposited graphene imperfections studied using scanning electrochemical microscopy. ACS Nano 6, 3070–3079 (2012).

  44. 44.

    Chua, C. K., Ambrosi, A. & Pumera, M. Graphene oxide reduction by standard industrial reducing agent: thiourea dioxide. J. Mater. Chem. 22, 11054–11061 (2012).

  45. 45.

    Ji, X., Banks, C. E., Crossley, A. & Compton, R. G. Oxygenated edge plane sites slow the electron transfer of the ferro-/ferricyanide redox couple at graphite electrodes. ChemPhysChem 7, 1337–1344 (2006).

  46. 46.

    Ahmed, S. M. & Gerischer, H. Influence of crystal surface orientation on redox reactions at semiconducting MoS2. Electrochim. Acta 24, 705–711 (1979).

  47. 47.

    Tan, S. M. et al. Pristine basal- and edge-plane-oriented molybdenite mos2 exhibiting highly anisotropic properties. Chem. Eur. J. 21, 7170–7178 (2015).

  48. 48.

    Wu, S. et al. Electrochemically reduced single-layer mos2 nanosheets: characterization, properties, and sensing applications. Small 8, 2264–2270 (2012).

  49. 49.

    Chia, X., Ambrosi, A., Sedmidubský, D., Sofer, Z. & Pumera, M. Precise tuning of the charge transfer kinetics and catalytic properties of mos2 materials via electrochemical methods. Chem. Eur. J. 20, 17426–17432 (2014).

  50. 50.

    Chia, X., Sofer, Z., Luxa, J. & Pumera, M. Layered noble metal dichalcogenides: tailoring electrochemical and catalytic properties. ACS Appl. Mater. Interfaces 9, 25587–25599 (2017).

  51. 51.

    Poh, H. L., Simek, P., Sofer, Z., Tomandl, I. & Pumera, M. Boron and nitrogen doping of graphene via thermal exfoliation of graphite oxide in a BF3 or NH3 atmosphere: contrasting properties. J. Mater. Chem. A 1, 13146–13153 (2013).

  52. 52.

    Wang, Y., Shao, Y., Matson, D. W., Li, J. & Lin, Y. Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4, 1790–1798 (2010).

  53. 53.

    Wong, C. H. A., Chua, C. K., Khezri, B., Webster, R. D. & Pumera, M. Graphene oxide nanoribbons from the oxidative opening of carbon nanotubes retain electrochemically active metallic impurities. Angew. Chem. Int. Ed. 52, 8685–8688 (2013).

  54. 54.

    Chee, S. Y. & Pumera, M. Metal-based impurities in graphenes: application for electroanalysis. Analyst 137, 2039–2041 (2012).

  55. 55.

    Chua, X. J. et al. negative electrocatalytic effects of p-doping niobium and tantalum on MoS2 and WS2 for the hydrogen evolution reaction and oxygen reduction reaction. ACS Catal. 6, 5724–5734 (2016).

  56. 56.

    Sofer, Z. et al. Layered black phosphorus: strongly anisotropic magnetic, electronic, and electron-transfer properties. Angew. Chem. Int. Ed. 55, 3382–3386 (2016).

  57. 57.

    Khan, A. F. et al. 2D hexagonal boron nitride (2D-hBN) explored as a potential electrocatalyst for the oxygen reduction reaction. Electroanalysis 29, 622–634 (2017).

  58. 58.

    Zhu, X. et al. Alkaline intercalation of Ti3C2 MXene for simultaneous electrochemical detection of Cd(II), Pb(II), Cu(II) and Hg(II). Electrochim. Acta 248, 46–57 (2017).

  59. 59.

    Kondo, T. et al. Plasma etching treatment for surface modification of boron-doped diamond electrodes. Electrochim. Acta 52, 3841–3848 (2007).

  60. 60.

    Menzel, N., Ortel, E., Kraehnert, R. & Strasser, P. Electrocatalysis using porous nanostructured materials. ChemPhysChem 13, 1385–1394 (2012).

  61. 61.

    Wang, G. et al. Engineering two-dimensional mass-transport channels of the MoS2 nanocatalyst toward improved hydrogen evolution performance. ACS Appl. Mater. Interfaces 10, 25409–25414 (2018). Highlights the significance of mass transport channels in layered materials towards enhancing their electrocatalytic hydrogen evolution efficiency.

  62. 62.

    Benson, J. et al. Tuning the catalytic activity of graphene nanosheets for oxygen reduction reaction via size and thickness reduction. ACS Appl. Mater. Interfaces 6, 19726–19736 (2014). Demonstrates the abundant graphene edges as the dominant factor in the activity of graphene catalyst towards oxygen reduction reaction.

  63. 63.

    Deng, D. et al. Size effect of graphene on electrocatalytic activation of oxygen. Chem. Commun. 47, 10016–10018 (2011).

  64. 64.

    Tao, L. et al. Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chem. Commun. 52, 2764–2767 (2016).

  65. 65.

    Uosaki, K. et al. Boron nitride nanosheet on gold as an electrocatalyst for oxygen reduction reaction: theoretical suggestion and experimental proof. J. Am. Chem. Soc. 136, 6542–6545 (2014).

  66. 66.

    Jaramillo, T. F. et al. Identification of active edge sites for electrochemical h2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

  67. 67.

    Kibsgaard, J., Chen, Z., Reinecke, B. N. & Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11, 963–969 (2012). Highlights that morphological engineering of MoS 2 materials to expose edge sites improves electrocatalytic hydrogen evolution reaction.

  68. 68.

    Wang, H. et al. MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano Lett. 13, 3426–3433 (2013).

  69. 69.

    Tsai, C., Chan, K., Nørskov, J. K. & Abild-Pedersen, F. Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides. Surf. Sci. 640, 133–140 (2015).

  70. 70.

    Voiry, D. et al. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 13, 6222–6227 (2013).

  71. 71.

    Lukowski, M. A. et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135, 10274–10277 (2013).

  72. 72.

    Lukowski, M. A. et al. Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energy Environ. Sci. 7, 2608–2613 (2014).

  73. 73.

    Seh, Z. W. et al. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 1, 589–594 (2016). Demonstrates that the basal planes of MXenes are also active sites for hydrogen evolution reaction.

  74. 74.

    Asadi, M. et al. Robust carbon dioxide reduction on molybdenum disulphide edges. Nat. Commun. 5, 4470 (2014).

  75. 75.

    Asadi, M. et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science 353, 467–470 (2016).Elucidates exfoliation of layered transition metal dichalcogenides to nanosheets which exhibit enhanced CO 2 reduction efficiency compared to their bulk counterparts due to the generation of a higher number of edges.

  76. 76.

    Song, F. & Hu, X. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 5, 4477 (2014).Shows liquid-phase exfoliated layered double hydroxides that possess accessible active sites and enhanced electron transport which increases their catalytic oxygen evolution efficiency.

  77. 77.

    Zhao, Y. et al. Sub-3 nm ultrafine monolayer layered double hydroxide nanosheets for electrochemical water oxidation. Adv. Energy Mater. 8, 1703585 (2018).

  78. 78.

    Ren, X. et al. Few‐layer black phosphorus nanosheets as electrocatalysts for highly efficient oxygen evolution reaction. Adv. Energy Mater. 7, 1700396 (2017).

  79. 79.

    Qu, L., Liu, Y., Baek, J.-B. & Dai, L. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4, 1321–1326 (2010).

  80. 80.

    Luo, Z. et al. Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property. J. Mater. Chem. 21, 8038–8044 (2011).

  81. 81.

    Guo, D. et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351, 361–365 (2016).

  82. 82.

    Zheng, Y., Jiao, Y., Ge, L., Jaroniec, M. & Qiao, S. Z. Two‐step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew. Chem. Int. Ed. 52, 3110–3116 (2013).

  83. 83.

    Wang, L., Ambrosi, A. & Pumera, M. “Metal‐free” catalytic oxygen reduction reaction on heteroatom‐doped graphene is caused by trace metal impurities. Angew. Chem. Int. Ed. 52, 13818–13821 (2013). Demonstrates that traces of metal impurities are sufficient to influence the performance of graphene as an oxygen reduction reaction catalyst.

  84. 84.

    Zhao, J. & Chen, Z. Carbon-doped boron nitride nanosheet: an efficient metal-free electrocatalyst for the oxygen reduction reaction. J. Phys. Chem. C 119, 26348–26354 (2015).

  85. 85.

    Elumalai, G., Noguchi, H., Lyalin, A., Taketsugu, T. & Uosaki, K. Gold nanoparticle decoration of insulating boron nitride nanosheet on inert gold electrode toward an efficient electrocatalyst for the reduction of oxygen to water. Electrochem. Commun. 66, 53–57 (2016).

  86. 86.

    Wang, J. et al. Porous boron carbon nitride nanosheets as efficient metal-free catalysts for the oxygen reduction reaction in both alkaline and acidic solutions. ACS Energy Lett. 2, 306–312 (2017).

  87. 87.

    Huang, X. et al. Activating basal planes and S‐terminated edges of MoS2 toward more efficient hydrogen evolution. Adv. Funct. Mater. 27, 1604943 (2017). Depicts that functionalization of the inert basal planes and S-edges of MoS 2 by doping resulted in enhanced catalyst behaviour for hydrogen evolution reaction.

  88. 88.

    Jiao, Y., Zheng, Y., Davey, K. & Qiao, S.-Z. Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nat. Energy 1, 16130 (2016).

  89. 89.

    Handoko, A. D. et al. Tuning the basal plane functionalization of two-dimensional metal carbides (MXenes) to control hydrogen evolution activity. ACS Appl. Energy Mater. 1, 173–180 (2018).

  90. 90.

    Sreekanth, N., Nazrulla, M. A., Vineesh, T. V., Sailaja, K. & Phani, K. L. Metal-free boron-doped graphene for selective electroreduction of carbon dioxide to formic acid/formate. Chem. Commun. 51, 16061–16064 (2015).

  91. 91.

    Wang, H., Chen, Y., Hou, X., Ma, C. & Tan, T. Nitrogen-doped graphenes as efficient electrocatalysts for the selective reduction of carbon dioxide to formate in aqueous solution. Green Chem. 18, 3250–3256 (2016).

  92. 92.

    Li, D., Ren, B., Jin, Q., Cui, H. & Wang, C. Nitrogen-doped, oxygen-functionalized, edge- and defect-rich vertically aligned graphene for highly enhanced oxygen evolution reaction. J. Mater. Chem. A 6, 2176–2183 (2018).

  93. 93.

    Zhang, Z., Khurram, M., Sun, Z. & Yan, Q. Uniform tellurium doping in black phosphorus single crystals by chemical vapor transport. Inorg. Chem. 57, 4098–4103 (2018).

  94. 94.

    Zheng, Y. et al. Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J. Am. Chem. Soc. 139, 3336–3339 (2017).

  95. 95.

    Liu, R., Wang, Y., Liu, D., Zou, Y. & Wang, S. Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation. Adv. Mater. 29, 1701546 (2017).Elucidates water–plasma-enabled exfoliation of layered CoFe double hydroxide nanosheets that generates multiple Co, Fe and O vacancies, which lower the adsorption energy of water, in turn leading to an enhanced catalytic oxygen evolution reaction.

  96. 96.

    Wang, Y. et al. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew. Chem. 129, 5961–5965 (2017).

  97. 97.

    Gong, M. et al. An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 135, 8452–8455 (2013).

  98. 98.

    Chen, S., Duan, J., Jaroniec, M. & Qiao, S. Z. Three-dimensional n-doped graphene hydrogel/NiCo double hydroxide electrocatalysts for highly efficient oxygen evolution. Angew. Chem. Int. Ed. 52, 13567–13570 (2013).

  99. 99.

    Li, Y. et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011).

Download references


X.C. acknowledges financial support from the Nanyang President Graduate Scholarship. This work was supported by the project Advanced Functional Nanobots (reg. No. CZ.02.1.01/0.0/0.0/15_003/0000444 financed by the EFRR).

Author information


  1. Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore

    • Xinyi Chia
  2. Centre for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Czech Republic

    • Martin Pumera


  1. Search for Xinyi Chia in:

  2. Search for Martin Pumera in:

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Martin Pumera.

About this article

Publication history