Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Characteristics and performance of two-dimensional materials for electrocatalysis


The unique anisotropy and electronic properties of 2D materials have sparked immense interest in their fundamental electrochemistry and wide spectrum of applications. Beginning with the prototype 2D material — graphene — studies into an extensive library of other ultrathin layered structures have gradually emerged. Among these are the transition metal dichalcogenides, layered double hydroxides, metal carbides and nitrides (MXenes) and the black phosphorus family of monoelemental compounds. In this Review, we discuss the similarities of these 2D materials and highlight differences in their electrochemical and electrocatalytic properties. Recent progress on 2D materials for energy-related electrocatalysis in industrially important reactions is presented. Together this shows that dimensionality and surface characteristics are both vital aspects to consider when designing and fabricating compounds to achieve desired properties in specific applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic structural configurations of 2D materials.

Figure reproduced from ref. 8, American Chemical Society (a,b), ref. 17, RSC (c); ref. 5, SNL (d,e); ref. 7, Wiley (f,g); and ref. 18, Wiley (h)

Fig. 2: Anisotropic effects that influence electron transfer at 2D materials.

Figure reproduced from ref. 47, Wiley

Fig. 3: Surface characteristics that influence electron transfer at 2D materials.

Figure reproduced from ref. 44, RSC (ac) and ref. 50, American Chemical Society (d,e)

Fig. 4: Mass transport affects electrocatalytic performance of 2D materials.

Figure reproduced from ref. 61, American Chemical Society

Fig. 5: Maximizing active sites for electrocatalysis of energy-related reactions.

Figure reproduced from ref. 67, SNL (ac) and ref. 76, SNL (d,e)

Fig. 6: Increasing the intrinsic activity for enhanced electrocatalysis in energy-related reactions.

figure reproduced from ref. 91, Wiley (ad) and ref. 95, Wiley (eg)


  1. 1.

    Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    CAS  Article  Google Scholar 

  2. 2.

    Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 9, 9451–9469 (2015).

    CAS  Article  Google Scholar 

  3. 3.

    Xu, M., Liang, T., Shi, M. & Chen, H. Graphene-like two-dimensional materials. Chem. Rev. 113, 3766–3798 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    Chia, X., Eng, A. Y. S., Ambrosi, A., Tan, S. M. & Pumera, M. Electrochemistry of nanostructured layered transition-metal dichalcogenides. Chem. Rev. 115, 11941–11966 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).

    Article  Google Scholar 

  6. 6.

    Carvalho, A. et al. Phosphorene: from theory to applications. Nat. Rev. Mater. 1, 16061 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    Pumera, M. & Sofer, Z. 2D monoelemental arsenene, antimonene, and bismuthene: beyond black phosphorus. Adv. Mater. 29, 1605299 (2017).

    Article  CAS  Google Scholar 

  8. 8.

    Jin, H. et al. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 118, 6337–6408 (2018).

    CAS  Article  Google Scholar 

  9. 9.

    Wang, Y., Wang, X. & Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Ed. 51, 68–89 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    Ambrosi, A., Chua, C. K., Bonanni, A. & Pumera, M. Electrochemistry of graphene and related materials. Chem. Rev. 114, 7150–7188 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    Py, M. A. & Haering, R. R. Structural destabilization induced by lithium intercalation in MoS2 and related compounds. Can. J. Phys. 61, 76–84 (1983).

    CAS  Article  Google Scholar 

  12. 12.

    Wilson, J. A. & Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18, 193–335 (1969).

    CAS  Article  Google Scholar 

  13. 13.

    Chia, X., Sutrisnoh, N. A. A., Sofer, Z., Luxa, J. & Pumera, M. Morphological effects and stabilization of the metallic 1T phase in layered V-, Nb-, and Ta-Doped WSe2 for electrocatalysis. Chem. Eur. J. 24, 3199–3208 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    Enyashin, A. N. et al. New route for stabilization of 1T-WS2 and MoS2 phases. J. Phys. Chem. C 115, 24586–24591 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    Tang, Q. & Jiang, D.-E. Stabilization and band-gap tuning of the 1T-MoS2 monolayer by covalent functionalization. Chem. Mater. 27, 3743–3748 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    Cavani, F., Trifirò, F. & Vaccari, A. Hydrotalcite-type anionic clays: preparation, properties and applications. Catal. Today 11, 173–301 (1991).

    CAS  Article  Google Scholar 

  17. 17.

    Miller, T. S. et al. Carbon nitrides: synthesis and characterization of a new class of functional materials. Phys. Chem. Chem. Phys. 19, 15613–15638 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    Naguib, M. et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011).

    CAS  Article  Google Scholar 

  19. 19.

    Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    Zhang, Q. et al. MoS2 yolk–shell microspheres with a hierarchical porous structure for efficient hydrogen evolution. Nano Res. 9, 3038–3047 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Mashtalir, O. et al. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716 (2013).

    Article  CAS  Google Scholar 

  22. 22.

    Chua, C. K., Sofer, Z. & Pumera, M. Graphite oxides: effects of permanganate and chlorate oxidants on the oxygen composition. Chem. Eur. J. 18, 13453–13459 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    Zhou, M. et al. Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem. Eur. J. 15, 6116–6120 (2009).

    CAS  Article  Google Scholar 

  24. 24.

    Bonde, J., Moses, P. G., Jaramillo, T. F., Norskov, J. K. & Chorkendorff, I. Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss. 140, 219–231 (2009).

    Article  Google Scholar 

  25. 25.

    Chia, X., Ambrosi, A., Sofer, Z., Luxa, J. & Pumera, M. Catalytic and charge transfer properties of transition metal dichalcogenides arising from electrochemical pretreatment. ACS Nano 9, 5164–5179 (2015). Illustrates the electrotreatment method of tuning the heterogeneous electron transfer properties of the layered transition metal dichalcogenides whereby a reductive treatment accelerates the electron transfer rate while an oxidation hinders the electron transfer.

    CAS  Article  Google Scholar 

  26. 26.

    Eng, A. Y. S., Ambrosi, A., Sofer, Z., Šimek, P. & Pumera, M. Electrochemistry of transition metal dichalcogenides: strong dependence on the metal-to-chalcogen composition and exfoliation method. ACS Nano 8, 12185–12198 (2014).

    CAS  Article  Google Scholar 

  27. 27.

    Tan, S. M., Sofer, Z., Luxa, J. & Pumera, M. Aromatic-exfoliated transition metal dichalcogenides: implications for inherent electrochemistry and hydrogen evolution. ACS Catal. 6, 4594–46071 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    Luxa, J. et al. Layered transition-metal ditellurides in electrocatalytic applications—contrasting properties. ACS Catal. 7, 5706–5716 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    Jaegermann, W. & Schmeisser, D. Reactivity of layer type transition metal chalcogenides towards oxidation. Surf. Sci. 165, 143–160 (1986).

    CAS  Article  Google Scholar 

  30. 30.

    Kautek, W. & Gerischer, H. Anisotropic photocorrosion of n-type MoS2, MoSe2, and WSe2 single crystal surfaces: the role of cleavage steps, line and screw dislocations. Surf. Sci. 119, 46–60 (1982).

    CAS  Article  Google Scholar 

  31. 31.

    Gholamvand, Z. et al. Comparison of liquid exfoliated transition metal dichalcogenides reveals MoSe2 to be the most effective hydrogen evolution catalyst. Nanoscale 8, 5737–5749 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    Chia, X. et al. Layered platinum dichalcogenides (PtS2, PtSe2, and PtTe2) electrocatalysis: monotonic dependence on the chalcogen size. Adv. Funct. Mater. 26, 4306–4318 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    Chia, X., Ambrosi, A., Lazar, P., Sofer, Z. & Pumera, M. Electrocatalysis of layered group 5 metallic transition metal dichalcogenides (MX2, M = V, Nb, and Ta; X = S, Se, and Te). J. Mater. Chem. A 4, 14241–14253 (2016).

    CAS  Article  Google Scholar 

  34. 34.

    Wang, L., Sofer, Z. & Pumera, M. Voltammetry of layered black phosphorus: electrochemistry of multilayer phosphorene. ChemElectroChem 2, 324–327 (2015).

    CAS  Article  Google Scholar 

  35. 35.

    Favron, A. et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14, 826–832 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Gusmão, R., Sofer, Z., Bouša, D. & Pumera, M. Pnictogen (As, Sb, Bi) nanosheets for electrochemical applications are produced by shear exfoliation using kitchen blenders. Angew. Chem. Int. Ed. 56, 14417–14422 (2017).

    Article  CAS  Google Scholar 

  37. 37.

    Fu, Y., Zhu, J., Hu, C., Wu, X. & Wang, X. Covalently coupled hybrid of graphitic carbon nitride with reduced graphene oxide as a superior performance lithium-ion battery anode. Nanoscale 6, 12555–12564 (2014).

    CAS  Article  Google Scholar 

  38. 38.

    Yew, Y. T. et al. Electrochemistry of layered graphitic carbon nitride synthesised from various precursors: searching for catalytic effects. ChemPhysChem 17, 481–488 (2016).

    CAS  Article  Google Scholar 

  39. 39.

    Lorencova, L. et al. Electrochemical performance of Ti3C2Tx MXene in aqueous media: towards ultrasensitive H2O2 sensing. Electrochim. Acta 235, 471–479 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Davies, T. J., Hyde, M. E. & Compton, R. G. Nanotrench arrays reveal insight into graphite electrochemistry. Angew. Chem. Int. Ed. 44, 5121–5126 (2005).

    CAS  Article  Google Scholar 

  41. 41.

    Yuan, W. et al. The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet. Sci. Rep. 3, 2248 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    McCreery, R. L. Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 108, 2646–2687 (2008).

    CAS  Article  Google Scholar 

  43. 43.

    Tan, C. et al. Reactivity of monolayer chemical vapor deposited graphene imperfections studied using scanning electrochemical microscopy. ACS Nano 6, 3070–3079 (2012).

    CAS  Article  Google Scholar 

  44. 44.

    Chua, C. K., Ambrosi, A. & Pumera, M. Graphene oxide reduction by standard industrial reducing agent: thiourea dioxide. J. Mater. Chem. 22, 11054–11061 (2012).

    CAS  Article  Google Scholar 

  45. 45.

    Ji, X., Banks, C. E., Crossley, A. & Compton, R. G. Oxygenated edge plane sites slow the electron transfer of the ferro-/ferricyanide redox couple at graphite electrodes. ChemPhysChem 7, 1337–1344 (2006).

    CAS  Article  Google Scholar 

  46. 46.

    Ahmed, S. M. & Gerischer, H. Influence of crystal surface orientation on redox reactions at semiconducting MoS2. Electrochim. Acta 24, 705–711 (1979).

    CAS  Article  Google Scholar 

  47. 47.

    Tan, S. M. et al. Pristine basal- and edge-plane-oriented molybdenite mos2 exhibiting highly anisotropic properties. Chem. Eur. J. 21, 7170–7178 (2015).

    CAS  Article  Google Scholar 

  48. 48.

    Wu, S. et al. Electrochemically reduced single-layer mos2 nanosheets: characterization, properties, and sensing applications. Small 8, 2264–2270 (2012).

    CAS  Article  Google Scholar 

  49. 49.

    Chia, X., Ambrosi, A., Sedmidubský, D., Sofer, Z. & Pumera, M. Precise tuning of the charge transfer kinetics and catalytic properties of mos2 materials via electrochemical methods. Chem. Eur. J. 20, 17426–17432 (2014).

    CAS  Article  Google Scholar 

  50. 50.

    Chia, X., Sofer, Z., Luxa, J. & Pumera, M. Layered noble metal dichalcogenides: tailoring electrochemical and catalytic properties. ACS Appl. Mater. Interfaces 9, 25587–25599 (2017).

    CAS  Article  Google Scholar 

  51. 51.

    Poh, H. L., Simek, P., Sofer, Z., Tomandl, I. & Pumera, M. Boron and nitrogen doping of graphene via thermal exfoliation of graphite oxide in a BF3 or NH3 atmosphere: contrasting properties. J. Mater. Chem. A 1, 13146–13153 (2013).

    CAS  Article  Google Scholar 

  52. 52.

    Wang, Y., Shao, Y., Matson, D. W., Li, J. & Lin, Y. Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4, 1790–1798 (2010).

    CAS  Article  Google Scholar 

  53. 53.

    Wong, C. H. A., Chua, C. K., Khezri, B., Webster, R. D. & Pumera, M. Graphene oxide nanoribbons from the oxidative opening of carbon nanotubes retain electrochemically active metallic impurities. Angew. Chem. Int. Ed. 52, 8685–8688 (2013).

    CAS  Article  Google Scholar 

  54. 54.

    Chee, S. Y. & Pumera, M. Metal-based impurities in graphenes: application for electroanalysis. Analyst 137, 2039–2041 (2012).

    CAS  Article  Google Scholar 

  55. 55.

    Chua, X. J. et al. negative electrocatalytic effects of p-doping niobium and tantalum on MoS2 and WS2 for the hydrogen evolution reaction and oxygen reduction reaction. ACS Catal. 6, 5724–5734 (2016).

    CAS  Article  Google Scholar 

  56. 56.

    Sofer, Z. et al. Layered black phosphorus: strongly anisotropic magnetic, electronic, and electron-transfer properties. Angew. Chem. Int. Ed. 55, 3382–3386 (2016).

    CAS  Article  Google Scholar 

  57. 57.

    Khan, A. F. et al. 2D hexagonal boron nitride (2D-hBN) explored as a potential electrocatalyst for the oxygen reduction reaction. Electroanalysis 29, 622–634 (2017).

    CAS  Article  Google Scholar 

  58. 58.

    Zhu, X. et al. Alkaline intercalation of Ti3C2 MXene for simultaneous electrochemical detection of Cd(II), Pb(II), Cu(II) and Hg(II). Electrochim. Acta 248, 46–57 (2017).

    CAS  Article  Google Scholar 

  59. 59.

    Kondo, T. et al. Plasma etching treatment for surface modification of boron-doped diamond electrodes. Electrochim. Acta 52, 3841–3848 (2007).

    CAS  Article  Google Scholar 

  60. 60.

    Menzel, N., Ortel, E., Kraehnert, R. & Strasser, P. Electrocatalysis using porous nanostructured materials. ChemPhysChem 13, 1385–1394 (2012).

    CAS  Article  Google Scholar 

  61. 61.

    Wang, G. et al. Engineering two-dimensional mass-transport channels of the MoS2 nanocatalyst toward improved hydrogen evolution performance. ACS Appl. Mater. Interfaces 10, 25409–25414 (2018). Highlights the significance of mass transport channels in layered materials towards enhancing their electrocatalytic hydrogen evolution efficiency.

    CAS  Article  Google Scholar 

  62. 62.

    Benson, J. et al. Tuning the catalytic activity of graphene nanosheets for oxygen reduction reaction via size and thickness reduction. ACS Appl. Mater. Interfaces 6, 19726–19736 (2014). Demonstrates the abundant graphene edges as the dominant factor in the activity of graphene catalyst towards oxygen reduction reaction.

    CAS  Article  Google Scholar 

  63. 63.

    Deng, D. et al. Size effect of graphene on electrocatalytic activation of oxygen. Chem. Commun. 47, 10016–10018 (2011).

    CAS  Article  Google Scholar 

  64. 64.

    Tao, L. et al. Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chem. Commun. 52, 2764–2767 (2016).

    CAS  Article  Google Scholar 

  65. 65.

    Uosaki, K. et al. Boron nitride nanosheet on gold as an electrocatalyst for oxygen reduction reaction: theoretical suggestion and experimental proof. J. Am. Chem. Soc. 136, 6542–6545 (2014).

    CAS  Article  Google Scholar 

  66. 66.

    Jaramillo, T. F. et al. Identification of active edge sites for electrochemical h2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    CAS  Article  Google Scholar 

  67. 67.

    Kibsgaard, J., Chen, Z., Reinecke, B. N. & Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11, 963–969 (2012). Highlights that morphological engineering of MoS 2 materials to expose edge sites improves electrocatalytic hydrogen evolution reaction.

    CAS  Article  Google Scholar 

  68. 68.

    Wang, H. et al. MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano Lett. 13, 3426–3433 (2013).

    CAS  Article  Google Scholar 

  69. 69.

    Tsai, C., Chan, K., Nørskov, J. K. & Abild-Pedersen, F. Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides. Surf. Sci. 640, 133–140 (2015).

    CAS  Article  Google Scholar 

  70. 70.

    Voiry, D. et al. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 13, 6222–6227 (2013).

    CAS  Article  Google Scholar 

  71. 71.

    Lukowski, M. A. et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135, 10274–10277 (2013).

    CAS  Article  Google Scholar 

  72. 72.

    Lukowski, M. A. et al. Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energy Environ. Sci. 7, 2608–2613 (2014).

    CAS  Article  Google Scholar 

  73. 73.

    Seh, Z. W. et al. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 1, 589–594 (2016). Demonstrates that the basal planes of MXenes are also active sites for hydrogen evolution reaction.

    CAS  Article  Google Scholar 

  74. 74.

    Asadi, M. et al. Robust carbon dioxide reduction on molybdenum disulphide edges. Nat. Commun. 5, 4470 (2014).

    CAS  Article  Google Scholar 

  75. 75.

    Asadi, M. et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science 353, 467–470 (2016).Elucidates exfoliation of layered transition metal dichalcogenides to nanosheets which exhibit enhanced CO 2 reduction efficiency compared to their bulk counterparts due to the generation of a higher number of edges.

    CAS  Article  Google Scholar 

  76. 76.

    Song, F. & Hu, X. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 5, 4477 (2014).Shows liquid-phase exfoliated layered double hydroxides that possess accessible active sites and enhanced electron transport which increases their catalytic oxygen evolution efficiency.

    CAS  Article  Google Scholar 

  77. 77.

    Zhao, Y. et al. Sub-3 nm ultrafine monolayer layered double hydroxide nanosheets for electrochemical water oxidation. Adv. Energy Mater. 8, 1703585 (2018).

    Article  CAS  Google Scholar 

  78. 78.

    Ren, X. et al. Few‐layer black phosphorus nanosheets as electrocatalysts for highly efficient oxygen evolution reaction. Adv. Energy Mater. 7, 1700396 (2017).

    Article  CAS  Google Scholar 

  79. 79.

    Qu, L., Liu, Y., Baek, J.-B. & Dai, L. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4, 1321–1326 (2010).

    CAS  Article  Google Scholar 

  80. 80.

    Luo, Z. et al. Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property. J. Mater. Chem. 21, 8038–8044 (2011).

    CAS  Article  Google Scholar 

  81. 81.

    Guo, D. et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351, 361–365 (2016).

    CAS  Article  Google Scholar 

  82. 82.

    Zheng, Y., Jiao, Y., Ge, L., Jaroniec, M. & Qiao, S. Z. Two‐step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew. Chem. Int. Ed. 52, 3110–3116 (2013).

    CAS  Article  Google Scholar 

  83. 83.

    Wang, L., Ambrosi, A. & Pumera, M. “Metal‐free” catalytic oxygen reduction reaction on heteroatom‐doped graphene is caused by trace metal impurities. Angew. Chem. Int. Ed. 52, 13818–13821 (2013). Demonstrates that traces of metal impurities are sufficient to influence the performance of graphene as an oxygen reduction reaction catalyst.

    CAS  Article  Google Scholar 

  84. 84.

    Zhao, J. & Chen, Z. Carbon-doped boron nitride nanosheet: an efficient metal-free electrocatalyst for the oxygen reduction reaction. J. Phys. Chem. C 119, 26348–26354 (2015).

    CAS  Article  Google Scholar 

  85. 85.

    Elumalai, G., Noguchi, H., Lyalin, A., Taketsugu, T. & Uosaki, K. Gold nanoparticle decoration of insulating boron nitride nanosheet on inert gold electrode toward an efficient electrocatalyst for the reduction of oxygen to water. Electrochem. Commun. 66, 53–57 (2016).

    CAS  Article  Google Scholar 

  86. 86.

    Wang, J. et al. Porous boron carbon nitride nanosheets as efficient metal-free catalysts for the oxygen reduction reaction in both alkaline and acidic solutions. ACS Energy Lett. 2, 306–312 (2017).

    CAS  Article  Google Scholar 

  87. 87.

    Huang, X. et al. Activating basal planes and S‐terminated edges of MoS2 toward more efficient hydrogen evolution. Adv. Funct. Mater. 27, 1604943 (2017). Depicts that functionalization of the inert basal planes and S-edges of MoS 2 by doping resulted in enhanced catalyst behaviour for hydrogen evolution reaction.

    Article  CAS  Google Scholar 

  88. 88.

    Jiao, Y., Zheng, Y., Davey, K. & Qiao, S.-Z. Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nat. Energy 1, 16130 (2016).

    CAS  Article  Google Scholar 

  89. 89.

    Handoko, A. D. et al. Tuning the basal plane functionalization of two-dimensional metal carbides (MXenes) to control hydrogen evolution activity. ACS Appl. Energy Mater. 1, 173–180 (2018).

    CAS  Article  Google Scholar 

  90. 90.

    Sreekanth, N., Nazrulla, M. A., Vineesh, T. V., Sailaja, K. & Phani, K. L. Metal-free boron-doped graphene for selective electroreduction of carbon dioxide to formic acid/formate. Chem. Commun. 51, 16061–16064 (2015).

    CAS  Article  Google Scholar 

  91. 91.

    Wang, H., Chen, Y., Hou, X., Ma, C. & Tan, T. Nitrogen-doped graphenes as efficient electrocatalysts for the selective reduction of carbon dioxide to formate in aqueous solution. Green Chem. 18, 3250–3256 (2016).

    CAS  Article  Google Scholar 

  92. 92.

    Li, D., Ren, B., Jin, Q., Cui, H. & Wang, C. Nitrogen-doped, oxygen-functionalized, edge- and defect-rich vertically aligned graphene for highly enhanced oxygen evolution reaction. J. Mater. Chem. A 6, 2176–2183 (2018).

    CAS  Article  Google Scholar 

  93. 93.

    Zhang, Z., Khurram, M., Sun, Z. & Yan, Q. Uniform tellurium doping in black phosphorus single crystals by chemical vapor transport. Inorg. Chem. 57, 4098–4103 (2018).

    CAS  Article  Google Scholar 

  94. 94.

    Zheng, Y. et al. Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J. Am. Chem. Soc. 139, 3336–3339 (2017).

    CAS  Article  Google Scholar 

  95. 95.

    Liu, R., Wang, Y., Liu, D., Zou, Y. & Wang, S. Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation. Adv. Mater. 29, 1701546 (2017).Elucidates water–plasma-enabled exfoliation of layered CoFe double hydroxide nanosheets that generates multiple Co, Fe and O vacancies, which lower the adsorption energy of water, in turn leading to an enhanced catalytic oxygen evolution reaction.

    Article  CAS  Google Scholar 

  96. 96.

    Wang, Y. et al. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew. Chem. 129, 5961–5965 (2017).

    Article  Google Scholar 

  97. 97.

    Gong, M. et al. An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 135, 8452–8455 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Chen, S., Duan, J., Jaroniec, M. & Qiao, S. Z. Three-dimensional n-doped graphene hydrogel/NiCo double hydroxide electrocatalysts for highly efficient oxygen evolution. Angew. Chem. Int. Ed. 52, 13567–13570 (2013).

    CAS  Article  Google Scholar 

  99. 99.

    Li, Y. et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011).

    CAS  Article  Google Scholar 

Download references


X.C. acknowledges financial support from the Nanyang President Graduate Scholarship. This work was supported by the project Advanced Functional Nanobots (reg. No. CZ.02.1.01/0.0/0.0/15_003/0000444 financed by the EFRR).

Author information



Corresponding author

Correspondence to Martin Pumera.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chia, X., Pumera, M. Characteristics and performance of two-dimensional materials for electrocatalysis. Nat Catal 1, 909–921 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing