Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide

Abstract

The electrosynthesis of higher-order alcohols from carbon dioxide and carbon monoxide addresses the need for the long-term storage of renewable electricity; unfortunately, the present-day performance remains below what is needed for practical applications. Here we report a catalyst design strategy that promotes C3 formation via the nanoconfinement of C2 intermediates, and thereby promotes C2:C1 coupling inside a reactive nanocavity. We first employed finite-element method simulations to assess the potential for the retention and binding of C2 intermediates as a function of cavity structure. We then developed a method of synthesizing open Cu nanocavity structures with a tunable geometry via the electroreduction of Cu2O cavities formed through acidic etching. The nanocavities showed a morphology-driven shift in selectivity from C2 to C3 products during the carbon monoxide electroreduction, to reach a propanol Faradaic efficiency of 21 ± 1% at a conversion rate of 7.8 ± 0.5 mA cm−2 at −0.56 V versus a reversible hydrogen electrode.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Computed concentration and flux distribution of species.
Fig. 2: Structural characterization of the 3D cavity confinement in nanocatalysts.
Fig. 3: Characterization of the as-prepared Cu2O and post-CORR Cu nanocatalysts.
Fig. 4: CO electrochemical reduction performance in a flow cell system.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Lin, S. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Asadi, M. et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science 353, 467–470 (2016).

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Jiang, K. et al. Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. Nat. Catal. 1, 111–119 (2018).

    Article  Google Scholar 

  4. 4.

    Zhuang, T.-T. et al. Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 1, 421–428 (2018).

    Article  Google Scholar 

  5. 5.

    Gao, S. et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529, 68–71 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Hahn, C. et al. Engineering Cu surfaces for the electrocatalytic conversion of CO2: controlling selectivity toward oxygenates and hydrocarbons. Proc. Natl Acad. Sci. USA 114, 5918–5923 (2017).

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Xiao, H., Goddard, W. A., Cheng, T. & Liu, Y. Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2. Proc. Natl Acad. Sci. USA 114, 6685–6688 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    De Luna, P. et al. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 1, 103–110 (2018).

    Article  Google Scholar 

  9. 9.

    Schouten, K. J. P., Calle‐Vallejo, F. & Koper, M. A step closer to the electrochemical production of liquid fuels. Angew. Chem. Int. Ed. 53, 10858–10860 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    Loiudice, A. et al. Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew. Chem. Int. Ed. 55, 5789–5792 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Ren, D., Wong, N. T., Handoko, A. D., Huang, Y. & Yeo, B. S. Mechanistic insights into the enhanced activity and stability of agglomerated Cu nanocrystals for the electrochemical reduction of carbon dioxide to n-propanol. J. Phys. Chem. Lett. 7, 20–24 (2016).

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Kim, D., Kley, C. S., Li, Y. & Yang, P. Copper nanoparticle ensembles for selective electroreduction of CO2 to C2–C3 products. Proc. Natl Acad. Sci. USA 114, 10560–10565 (2017).

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Verma, S., Lu, X., Ma, S., Masel, R. I. & Kenis, P. J. The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes. Phys. Chem. Chem. Phys. 18, 7075–7084 (2016).

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Jhong, H. R. M. et al. A nitrogen‐doped carbon catalyst for electrochemical CO2 conversion to CO with high selectivity and current density. ChemSusChem 10, 1094–1099 (2017).

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012).

    CAS  Article  Google Scholar 

  16. 16.

    Kortlever, R., Shen, J., Schouten, K. J. P., Calle-Vallejo, F. & Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    Seifitokaldani, A. et al. Hydronium-induced switching between CO2 electroreduction pathways. J. Am. Chem. Soc. 140, 3833–3837 (2018).

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    Verdaguer-Casadevall, A. et al. Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J. Am. Chem. Soc. 137, 9808–9811 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    Xiao, H., Cheng, T. & Goddard, W. A. III Atomistic mechanisms underlying selectivities in C1 and C2 products from electrochemical reduction of CO on Cu(111). J. Am. Chem. Soc. 139, 130–136 (2016).

    Article  PubMed  Google Scholar 

  21. 21.

    Yang, K. D. et al. Morphology‐directed selective production of ethylene or ethane from CO2 on a Cu mesopore electrode. Angew. Chem. Int. Ed. 56, 796–800 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    Zheng, G. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotech. 9, 618–623 (2014).

    CAS  Article  Google Scholar 

  23. 23.

    Li, Z. et al. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium–sulfur batteries. Nat. Commun. 7, 13065 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Wu, H.-L. et al. Formation of pseudomorphic nanocages from Cu2O nanocrystals through anion exchange reactions. Science 351, 1306–1310 (2016).

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Kuo, C.-H. & Huang, M. H. Fabrication of truncated rhombic dodecahedral Cu2O nanocages and nanoframes by particle aggregation and acidic etching. J. Am. Chem. Soc. 130, 12815–12820 (2008).

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Mistry, H. et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 7, 12123 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Sen, S., Liu, D. & Palmore, G. T. R. Electrochemical reduction of CO2 at copper nanofoams. ACS Catal. 4, 3091–3095 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    Favaro, M. et al. Subsurface oxide plays a critical role in CO2 activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2. Proc. Natl Acad. Sci. USA 114, 6706–6711 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Rasul, S. et al. A highly selective copper–indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO. Angew. Chem. Int. Ed. 7, 2146–2150 (2015).

    Article  Google Scholar 

  30. 30.

    Thang Dinh., C. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    Article  Google Scholar 

  31. 31.

    Hori, Y., Takahashi, R., Yoshinami, Y. & Murata, A. Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B 101, 7075–7081 (1997).

    CAS  Article  Google Scholar 

  32. 32.

    Unver, A. & Himmelblau, D. Diffusion coefficients of CO2, C2H4, C3H6 and C4H8 in water from 6 to 65 °C. J. Chem. Eng. Data 9, 428–431 (1964).

    CAS  Article  Google Scholar 

  33. 33.

    Hao, L. & Leaist, D. G. Binary mutual diffusion coefficients of aqueous alcohols. Methanol to 1-heptanol. J. Chem. Eng. Data 41, 210–213 (1996).

    CAS  Article  Google Scholar 

  34. 34.

    Cussler, E. L. Diffusion: Mass Transfer in Fluid Systems (Cambridge Univ. Press, Cambridge, 2009).

  35. 35.

    Waszczuk, P., Zelenay, P. & Sobkowski, J. Surface interaction of benzoic-acid with a copper electrode. Electrochim. Acta 40, 1717–1721 (1995).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ontario Research Fund Research-Excellence Program, the Natural Sciences and Engineering Research Council (NSERC) of Canada, the CIFAR Bio-Inspired Solar Energy program and University of Toronto Connaught grant. The authors thank T. P. Wu, Z. Finfrock and L. Ma for technical support at the 9BM beam-line of the Advanced Photon Source (Lemont, IL). This research used resources of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory and was supported by the US DOE under Contract no. DE-AC02-06CH11357, and the Canadian Light Source and its funding partners. S.H.Y. acknowledges funding from the National Natural Science Foundation of China (Grant 21431006) and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant 21521001). The authors thank X. Wang and A. Seifitokaldani from the University of Toronto for fruitful discussions.

Author information

Affiliations

Authors

Contributions

E.H.S. and D.S. supervised the project. T.-T.Z. designed the structures, carried out the experiments and wrote the paper. Y.P. carried out the FEM simulations. Z.Q.L. and Y.L. helped to synthesize the catalysts and collect the electroreduction performance data. Z.W. helped to do the DFT simulations. C.-S.T. and P.-L.H. helped to characterize the morphology of the catalyst. J.L. performed the X-ray spectroscopy measurements. M.L., A.P. and A.J. carried out the grazing incidence wide-angle X-ray scattering measurements. All the authors discussed the results and assisted during the manuscript preparation.

Corresponding authors

Correspondence to David Sinton or Edward H. Sargent.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–18, Supplementary Tables 1–5 and Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhuang, T., Pang, Y., Liang, Z. et al. Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nat Catal 1, 946–951 (2018). https://doi.org/10.1038/s41929-018-0168-4

Download citation

Further reading