Crossing the great divide between single-crystal reactivity and actual catalyst selectivity with pressure transients


The quantitative prediction of catalyst selectivity is essential to the design of efficient catalytic processes and requires a detailed knowledge of the reaction mechanism and rate constants. Here we present a study that accurately predicts, using the kinetics and a mechanism derived from fundamental studies on single-crystal gold, the product distribution resulting from the complex reaction network that governs the oxidative coupling of methanol, catalysed by nanoporous gold between 360 and 425 K and for a vast range of pressures. Analysis of the transient product responses to micropulses of methanol over nanoporous gold yields a precise understanding of the marked dependence of selectivity on pressure, surface oxygen coverage and temperature. The key to a high selectivity for methyl formate is the surface lifetime and abundance of the methoxy. This successful microkinetic modelling of catalytic reactions across a wide set of reaction conditions is broadly applicable to predicting catalytic selectivity and provides a pathway to designing more efficient catalytic processes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Elementary reaction steps and competing pathways for the oxidation of methanol on Au(111).
Fig. 2: The temperature-programmed reaction product spectrum of methanol reacting with preadsorbed O on Au(111).
Fig. 3: Summary of the reaction network in Fig. 1 for methanol self-coupling over a NPAu catalyst.
Fig. 4: Gas composition at the reactor exit that result from pulsed methanol exposure to nanoporous Ag0.03Au0.97.
Fig. 5: Height-normalized transient responses.
Fig. 6: Computed product selectivity contours for methanol coupling over nanoporous Ag0.03Au0.97.
Fig. 7: The effect of surface methoxy concentration on the coupling selectivity.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Holdren, J. P. Materials Genome Initiative for Global Competitiveness (National Science and Technology Council, Washington DC, 2011).

  2. 2.

    Hattrick-Simpers, J., Wen, C. & Lauterbach, J. The materials super highway: integrating high-throughput experimentation into mapping the catalysis materials genome. Catal. Lett. 145, 290–298 (2015).

  3. 3.

    Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Density functional theory in surface chemistry and catalysis. Nat. Chem. 1, 37–46 (2009).

  4. 4.

    Nørskov, J. K., Abild-Pedersen, F., Studt, F. & Bligaard, T. Density functional theory in surface chemistry and catalysis. Proc. Natl Acad. Sci. USA 108, 937–943 (2011).

  5. 5.

    Xu, J. G. & Froment, G. F. Methane steam reforming, methanation and water–gas shift .1. Intrinsic kinetics. AIChE J. 35, 88–96 (1989).

  6. 6.

    Gleaves, J. T., Ebner, J. R. & Kuechler, T. C. Temporal analysis of products (TAP)—a unique catalyst evaluation system with submillisecond time resolution. Catal. Rev. 30, 49–116 (1988).

  7. 7.

    Stahl, S. S. Palladium-catalyzed oxidation of organic chemicals with O2. Science 309, 1824–1826 (2005).

  8. 8.

    Sheldon, R. A. in Heterogeneous Catalysis and Fine Chemicals II, Vol. 59 (eds Guisnet, M. et al.) 33–54 (Studies in Surface Science and Catalysis Vol. 59, Elsevier, Amsterdam, 1991).

  9. 9.

    Sheldon, R. A. Catalytic oxidations in the manufacture of fine chemicals. Stud. Surf. Sci. Catal. 55, 1–32 (1990).

  10. 10.

    Xu, B. & Friend, C. M. Oxidative coupling of alcohols on gold: insights from experiments and theory. Faraday Discuss. 152, 307 (2011).

  11. 11.

    Stowers, K. J., Madix, R. J. & Friend, C. M. From model studies on Au(111) to working conditions with unsupported nanoporous gold catalysts: oxygen-assisted coupling reactions. J. Catal. 308, 131–141 (2013).

  12. 12.

    Xu, B., Haubrich, J., Baker, T. A., Kaxiras, E. & Friend, C. M. Theoretical study of O-assisted selective coupling of methanol on Au(111). J. Phys. Chem. C 115, 3703–3708 (2011).

  13. 13.

    Wachs, I. E. & Madix, R. J. The surface intermediate H2COO. Appl. Surf. Sci. 5, 426–428 (1980).

  14. 14.

    Outka, D. A. & Madix, R. J. Acid–base and nucleophilic chemistry of atomic oxygen on the Au(110) surface: reactions with formic acid and formaldehyde. Surf. Sci. 179, 361–376 (1987).

  15. 15.

    Xu, B., Liu, X., Haubrich, J., Madix, R. J. & Friend, C. M. Selectivity control in gold-mediated esterification of methanol. Angew. Chem. Int. Ed. 48, 4206–4209 (2009).

  16. 16.

    Xu, B., Madix, R. J. & Friend, C. M. Predicting gold-mediated catalytic oxidative-coupling reactions from single crystal studies. Acc. Chem. Res. 47, 761–772 (2014).

  17. 17.

    Sexton, B. A. & Madix, R. J. A vibrational study of formic acid interaction with clean and oxygen-covered silver (110)surfaces. Surf. Sci. 105, 177–195 (1981).

  18. 18.

    Personick, M. L. et al. Ozone-activated nanoporous gold: a stable and storable material for catalytic oxidation. ACS Catal. 5, 4237–4241 (2015).

  19. 19.

    Sault, A. G., Madix, R. J. & Campbell, C. T. Adsorption of oxygen and hydrogen on Au(110)-(1 × 2). Surf. Sci. 169, 347–356 (1986).

  20. 20.

    Meyer, R., Lemire, C., Shaikhutdinov, S. K. & Freund, H.-J. Surface chemistry of catalysis by gold. Gold Bull. 37, 72–124 (2004).

  21. 21.

    Wittstock, A. et al. Nanoporous Au: an unsupported pure gold catalyst? J. Phys. Chem. C 113, 5593–5600 (2009).

  22. 22.

    Wittstock, A. et al. Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 327, 319–322 (2010).

  23. 23.

    Getman, R. B., Yu, Y. & Schneider, W. F. Thermodynamics of environment-dependent oxygen chemisorption on Pt(111). J. Phys. Chem. C 112, 9559–9572 (2008).

  24. 24.

    Mulla, S. S., Chen, N., Delgass, W. N., Eppling, W. S. & Ribeiro, F. H. NO2 inhibits the catalytic reaction of NO and O2 over Pt. Catal. Lett. 200, 267–270 (2005).

  25. 25.

    Zugic, B. et al. Dynamic restructuring drives catalytic activity on nanoporous gold–silver alloy catalysts. Nat. Mater. 16, 558–564 (2016).

  26. 26.

    Redhead, P. A. Thermal desorption of gases. Vacuum 12, 203–211 (1962).

  27. 27.

    Falconer, J. L. & Madix, R. J. Flash desorption activation energies: DCOOH decomposition and CO desorption from Ni(110). Surf. Sci. 48, 393–405 (1975).

  28. 28.

    Gleaves, J. J. T., Yablonskii, G. G. S., Phanawadee, P. & Schuurman, Y. TAP-2: an interrogative kinetics approach. Appl. Catal. A 160, 55–88 (1997).

  29. 29.

    Shekhtman, S. O., Yablonsky, G. S., Chen, S. & Gleaves, J. T. Thin-zone TAP-reactor—theory and application. Chem. Eng. Sci. 54, 4371–4378 (1999).

  30. 30.

    Shekhtman, S. O., Yablonsky, G. S., Gleaves, J. T. & Fushimi, R. R. Thin-zone TAP reactor as a basis of "state-by-state transient screening". Chem. Eng. Sci. 59, 5493–5500 (2004).

  31. 31.

    Yablonsky, G. S., Olea, M. & Marin, G. B. Temporal analysis of products: basic principles, applications, and theory. J. Catal. 216, 120–134 (2003).

  32. 32.

    Shekhtman, S. O., Yablonsky, G. S., Gleaves, J. T. & Fushimi, R. ‘State defining’ experiment in chemical kinetics—primary characterization of catalyst activity in a TAP experiment. Chem. Eng. Sci. 58, 4843–4859 (2003).

  33. 33.

    Gleaves, J. T., Yablonsky, G., Zheng, X., Fushimi, R. & Mills, P. L. Temporal analysis of products (TAP)—recent advances in technology for kinetic analysis of multi-component catalysts. J. Mol. Catal. A 315, 108–134 (2010).

  34. 34.

    Constales, D., Yablonsky, G. S., Marin, G. B. & Gleaves, J. T. Multi-zone TAP-reactors theory and application: I. The global transfer matrix equation. Chem. Eng. Sci. 56, 133–149 (2001).

  35. 35.

    Campbell, C. T. The degree of rate control: a powerful tool for catalysis research. ACS Catal. 7, 2770–2779 (2017).

  36. 36.

    Xu, B., Madix, R. J. & Friend, C. M. Achieving optimum selectivity in oxygen assisted alcohol cross-coupling on gold. J. Am. Chem. Soc. 132, 16571–16580 (2010).

  37. 37.

    Stoltze, P. Microkinetic simulation of catalytic reactions. Prog. Surf. Sci. 65, 65–150 (2000).

  38. 38.

    Salciccioli, M., Stamatakis, M., Caratzoulas, S. & Vlachos, D. G. A review of multiscale modeling of metal-catalyzed reactions: mechanism development for complexity and emergent behavior. Chem. Eng. Sci. 66, 4319–4355 (2011).

  39. 39.

    MATLAB—MathWorks (The Mathworks, 2016);

  40. 40.

    Wang, L.-C. et al. Active sites for methanol partial oxidation on nanoporous gold catalysts. J. Catal. 344, (2016).

Download references


This work was supported as part of the Integrated Mesoscale Architectures for Sustainable Catalysis (IMASC), an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award no. DE-SC0012573. E.A.R. expresses his gratitude to U. Olsbye for her support and enthusiasm about applying TAP for mechanistic research in catalysis. E.A.R. acknowledges the Norwegian Research Council for financial support through contract 239193.

Author information

R.J.M. and E.A.R. guided the research. C.R. and S.K. performed the experiments. C.R. performed the microkinetic modelling. R.J.M., C.R, E.A.R., S.K. and C.M.F. all participated in frequent discussions and contributed significantly to writing the manuscript.

Correspondence to Robert. J. Madix.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–8, Supplementary Figures 1–5, Supplementary Tables 1–4 and Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reece, C., Redekop, E.A., Karakalos, S. et al. Crossing the great divide between single-crystal reactivity and actual catalyst selectivity with pressure transients. Nat Catal 1, 852–859 (2018).

Download citation

Further reading