Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Distributed processes for biomass conversion could aid UN Sustainable Development Goals

Catalysis can contribute in many ways to achieving the UN Sustainable Development Goals. Here, the opportunities arising through the interplay of biomass valorization and distributed production approaches are discussed.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Centralized versus distributed production.
Fig. 2: Interconnected biogeochemical and hydrological cycles.

References

  1. Griggs, D. et al. Nature 495, 305–307 (2013).

    Article  CAS  Google Scholar 

  2. Sachs, J. D. Lancet 379, 2206–2211 (2012).

    Article  Google Scholar 

  3. van der Hoeven, M., Kobayashi, Y. & Diercks, R. Technology Roadmap: Energy and GHG Reductions in the Chemical Industry via Catalytic Processes 56 (International Energy Agency, 2013).

  4. Koval, C., Lercher, J. & Scott, S. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Catalysis Science to Transform Energy Technologies (US Department of Energy, Washington DC, 2017); https://go.nature.com/2N2LGTZ

  5. Alonso, D. M. et al. Sci. Adv. 3, e1603301 (2017).

    Article  Google Scholar 

  6. Zaimes, G. G. et al. Energy Environ. Sci. 10, 1034–1050 (2017).

    Article  CAS  Google Scholar 

  7. Conti, J. et al. International Energy Outlook 2016 With Projections to 2040 (USDOE Energy Information Administration, Office of Energy Analysis, 2016).

  8. Resasco, D. E. J. Phys. Chem. Lett. 2, 2294–2295 (2011).

    Article  CAS  Google Scholar 

  9. Climent, M. J., Corma, A. & Iborra, S. Green Chem. 16, 516–547 (2014).

    Article  CAS  Google Scholar 

  10. Resasco, D. E., Wang, B. & Crossley, S. Catal. Sci. Technol. 6, 2543–2559 (2016).

    Article  CAS  Google Scholar 

  11. Mellmer, M. A. et al. Nat. Catal. 1, 199–207 (2018).

    Article  Google Scholar 

  12. Zapata, P. A., Faria, J., Ruiz, M. P., Jentoft, R. E. & Resasco, D. E. J. Am. Chem. Soc. 134, 8570–8578 (2012).

    Article  CAS  Google Scholar 

  13. Sun, Z. H. et al. Nat. Catal. 1, 82–92 (2018).

    Article  Google Scholar 

  14. Chheda, J. N., Huber, G. W. & Dumesic, J. A. Angew. Chem. Int. Ed. 46, 7164–7183 (2007).

    Article  CAS  Google Scholar 

  15. Beck, A. W. et al. ACS Sustain. Chem. Eng. 6, 5826–5834 (2018).

    Article  CAS  Google Scholar 

  16. Zhang, P. et al. Nat. Catal. 1, 332–338 (2018).

    Article  Google Scholar 

  17. Deng, W. et al. Proc. Natl Acad. Sci. USA 115, 5093–5098 (2018).

    Article  CAS  Google Scholar 

  18. Gumidyala, A., Wang, B. & Crossley, S. Sci. Adv. 2, e1601072 (2016).

    Article  Google Scholar 

  19. Sameni, J., Krigstin, S. & Sain, M. BioResources 12, 1548–1565 (2017).

    Article  CAS  Google Scholar 

  20. Wyman, C. E. Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals (Wiley, Chichester, 2013).

  21. Mathews, K. India acetic acid market to grow at a CAGR of 9% during 2016–2025. TechSci Research https://go.nature.com/2QYJdNv (accessed 7 September 2018).

  22. Cha, J. S. et al. J. Ind. Eng. Chem. 40, 1–15 (2016).

    Article  CAS  Google Scholar 

  23. Manya, J. J. Environ. Sci. Technol. 46, 7939–7954 (2012).

    Article  CAS  Google Scholar 

  24. Banerjee, A., Dick, G. R., Yoshino, T. & Kanan, M. W. Nature 531, 215–219 (2016).

    Article  CAS  Google Scholar 

  25. Motagamwala, A. H. et al. Sci. Adv. 4, eaap9722 (2018).

    Article  Google Scholar 

  26. Pang, J. F. et al. Green Chem. 18, 342–359 (2016).

    Article  CAS  Google Scholar 

  27. Eerhart, A. J. J. E., Faaij, A. P. C. & Patel, M. K. Energy Environ. Sci. 5, 6407–6422 (2012).

    Article  CAS  Google Scholar 

  28. Zhu, J. B., Watson, E. M., Tang, J. & Chen, E. Y. Science 360, 398–403 (2018).

    Article  CAS  Google Scholar 

  29. Jones, G. O., Yuen, A., Wojtecki, R. J., Hedrick, J. L. & Garcia, J. M. Proc. Natl Acad. Sci. USA 113, 7722–7726 (2016).

    Article  CAS  Google Scholar 

  30. Mohamed, B. A., Kim, C. S., Ellis, N. & Bi, X. Bioresour. Technol. 201, 121–132 (2016).

    Article  CAS  Google Scholar 

  31. Brunson, L. R. & Sabatini, D. A. Sci. Total Environ. 488, 580–587 (2014).

    Article  Google Scholar 

  32. Hagemann, N., Kammann, C. I., Schmidt, H. P., Kappler, A. & Behrens, S. PLoS ONE 12, e0171214 (2017).

    Article  Google Scholar 

  33. Chen, W. et al. J. Anal. Appl. Pyrol. 120, 186–193 (2016).

    Article  CAS  Google Scholar 

  34. Withers, P. J. et al. Green Chem. 17, 2087–2099 (2015).

    Article  CAS  Google Scholar 

  35. Cordell, D., Drangert, J.-O. & White, S. Global Environ. Change 19, 292–305 (2009).

    Article  Google Scholar 

  36. Manto, M. J., Xie, P. & Wang, C. ACS Catal. 7, 1931–1938 (2017).

    Article  CAS  Google Scholar 

  37. Zhou, Y. & Tol, R. S. J. Water Resour. Res. 41, W03003 (2005).

    Article  Google Scholar 

  38. Polak, P. & Warwick, M. The Business Solution to Poverty: Designing Products and Services for Three Billion New Customers (Berrett-Koehler Publishers, San Fransisco, 2013).

  39. Energy and Air Pollution: World Energy Outlook Special Report (IEA, 2016); https://go.nature.com/2zwgCIV

  40. Upham, D. C. et al. Science 358, 917–920 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D.E.R. and B.W. appreciate funding from the US Department of Energy, Basic Energy Sciences (Grant DE-SC0018284).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel E. Resasco or Bin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Resasco, D.E., Wang, B. & Sabatini, D. Distributed processes for biomass conversion could aid UN Sustainable Development Goals. Nat Catal 1, 731–735 (2018). https://doi.org/10.1038/s41929-018-0166-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-018-0166-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing