Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

ELECTROCATALYSIS

Electrochemical alternative to Fischer–Tropsch

The electroreduction of CO represents a promising approach toward artificial hydrocarbon synthesis, but its rate is limited by the sluggish transport of CO in aqueous electrolytes. Recent work shows how the issue can be circumvented by using gas diffusion electrodes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electroreduction of CO2 and CO using gas diffusion electrodes.

References

  1. Holladay, J. D., Hu, J., King, D. L. & Wang, Y. Catal. Today 139, 244–260 (2009).

    Article  CAS  Google Scholar 

  2. Hori, Y., Murata, A., Takahashi, R. & Suzuki, S. J. Phys. Chem. Lett. 109, 5022–5033 (1987).

    CAS  Google Scholar 

  3. Li, C. W., Ciston, J. & Kanan, M. W. Nature 508, 504–507 (2014).

    Article  CAS  Google Scholar 

  4. Chan, K.-Y. & Li, C.-Y. V. Electrochemically Enabled Sustainability: Devices, Materials and Mechanisms for Energy Conversion 1st edn (CRC Press, Boca Raton, 2014).

  5. Olah, G. A., Prakash, G. K. S. & Goeppert, A. J. Am. Chem. Soc. 133, 12881–12898 (2011).

    Article  CAS  Google Scholar 

  6. Singh, M. R., Clark, E. L. & Bell, A. T. Proc. Natl Acad. Sci. USA 112, E6111–E6118 (2015).

    Article  CAS  Google Scholar 

  7. Raciti, D., Cao, L., Li, C., Livi, K. J. T. & Rottmann, P. F. ACS Catal. 7, 4467–4472 (2017).

    Article  CAS  Google Scholar 

  8. Calle-Vallejo, F. & Koper, M. T. M. Angew. Chem. Int. Ed. 52, 7282–7285 (2013).

    Article  CAS  Google Scholar 

  9. Jouny, M., Luc, W. & Jiao, F. Nat. Catal. https://doi.org/10.1038/s41929-018-0133-2 (2018).

  10. Spurgeon, J. M. & Kumar, B. Energy Environ. Sci. 11, 1536–1551 (2018).

    Article  CAS  Google Scholar 

  11. Dinh, C. T. et al. Science 360, 783–787 (2018).

    Article  CAS  Google Scholar 

  12. Whipple, D. T. & Kenis, P. J. A. J. Phys. Chem. Lett. 1, 3451–3458 (2010).

    Article  CAS  Google Scholar 

  13. Kuhl, K. P. et al. J. Am. Chem. Soc. 136, 14107–14113 (2014).

    Article  CAS  Google Scholar 

  14. Rosen, B. A. et al. Science 334, 643–644 (2011).

    Article  CAS  Google Scholar 

  15. Grosse, P. et al. Angew. Chem. Int. Ed. 57, 6192–6197 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raciti, D., Wang, C. Electrochemical alternative to Fischer–Tropsch. Nat Catal 1, 741–742 (2018). https://doi.org/10.1038/s41929-018-0160-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-018-0160-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing