Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Water oxidation on a mononuclear manganese heterogeneous catalyst

Abstract

Water oxidation is the prerequisite for dioxygen evolution in natural or artificial photosynthesis. Although it has been demonstrated that multinuclear active sites are commonly necessary for water oxidation, as inspired by the natural oxygen-evolving centre CaMn4O5, a multinuclear manganese cluster, whether mononuclear manganese can also efficiently catalyse water oxidation has been a long-standing question. Herein, we found that a heterogeneous catalyst with mononuclear manganese embedded in nitrogen-doped graphene (Mn-NG) shows a turnover frequency as high as 214 s−1 for chemical water oxidation and an electrochemical overpotential as low as 337 mV at a current density of 10 mA cm−2. Structural characterization and density functional theory calculations reveal that the high activity of Mn-NG can be attributed to the mononuclear manganese ion coordinated with four nitrogen atoms embedded in the graphene matrix.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural characterizations of Mn-G and Mn-NG.
Fig. 2: Chemical and electrochemical water oxidation properties of Mn-G and Mn-NG.
Fig. 3: Evaluation of catalytic activity by DFT simulations.
Fig. 4: Proposed water oxidation mechanism.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Bard, A. J. & Fox, M. A. Artificial photosynthesis—solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28, 141–145 (1995).

    Article  CAS  Google Scholar 

  2. Yano, J. & Yachandra, V. Mn4Ca cluster in photosynthesis: where and how water is oxidized to dioxygen. Chem. Rev. 114, 4175–4205 (2014).

    Article  CAS  Google Scholar 

  3. Ogata, K., Yuki, T., Hatakeyama, M., Uchida, W. & Nakamura, S. All-atom molecular dynamics simulation of photosystem II embedded in thylakoid membrane. J. Am. Chem. Soc. 135, 15670–15673 (2013).

    Article  CAS  Google Scholar 

  4. Yang, J., Wang, D., Han, H. & Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 46, 1900–1909 (2013).

    Article  CAS  Google Scholar 

  5. Spoeri, C., Kwan, J. T. H., Bonakdarpour, A., Wilkinson, D. P. & Strasser, P. The stability challenges of oxygen evolving catalysts: towards a common fundamental understanding and mitigation of catalyst degradation. Angew. Chem. Int. Ed. 56, 5994–6021 (2017).

    Article  CAS  Google Scholar 

  6. Dismukes, G. C. et al. Development of bioinspired Mn4O4-cubane water oxidation catalysts: lessons from photosynthesis. Acc. Chem. Res. 42, 1935–1943 (2009).

    Article  CAS  Google Scholar 

  7. Garrido-Barros, P., Gimbert-Surinach, C., Matheu, R., Sala, X. & Llobet, A. How to make an efficient and robust molecular catalyst for water oxidation. Chem. Soc. Rev. 46, 6088–6098 (2017).

    Article  CAS  Google Scholar 

  8. Limburg, J. et al. A functional model for O–O bond formation by the O2-evolving complex in photosystem II. Science 283, 1524–1527 (1999).

    Article  CAS  Google Scholar 

  9. Yagi, M. & Narita, K. Catalytic O2 evolution from water induced by adsorption of [(OH2)(terpy)Mn(μ-O)2Mn(terpy)(OH2)]3+ complex onto clay compounds. J. Am. Chem. Soc. 126, 8084–8085 (2004).

    Article  CAS  Google Scholar 

  10. Kanady, J. S., Tsui, E. Y., Day, M. W. & Agapie, T. A synthetic model of the Mn3Ca subsite of the oxygen-evolving complex in photosystem II. Science 333, 733–736 (2011).

    Article  CAS  Google Scholar 

  11. Hocking, R. K. et al. Water-oxidation catalysis by manganese in a geochemical-like cycle. Nat. Chem. 3, 461–466 (2011).

    Article  CAS  Google Scholar 

  12. Chen, H. Y., Faller, J. W., Crabtree, R. H. & Brudvig, G. W. Dimer-of-dimers model for the oxygen-evolving complex of photosystem II. Synthesis and properties of [Mniv 4O5)(terpy)4(H2O)2](ClO4)6. J. Am. Chem. Soc. 126, 7345–7349 (2004).

    Article  CAS  Google Scholar 

  13. Ruettinger, W. F., Campana, C. & Dismukes, G. C. Synthesis and characterization of Mn4O4L6 complexes with cubane-like core structure: a new class of models of the active site of the photosynthetic water oxidase. J. Am. Chem. Soc. 119, 6670–6671 (1997).

    Article  CAS  Google Scholar 

  14. Zhang, C. et al. A synthetic Mn4Ca-cluster mimicking the oxygen-evolving center of photosynthesis. Science 348, 690–693 (2015).

    Article  CAS  Google Scholar 

  15. Schwarz, B. et al. Visible-light-driven water oxidation by a molecular manganese vanadium oxide cluster. Angew. Chem. Int. Ed. 55, 6329–6333 (2016).

    Article  CAS  Google Scholar 

  16. Maayan, G., Gluz, N. & Christou, G. A bioinspired soluble manganese cluster as a water oxidation electrocatalyst with low overpotential. Nat. Catal. 1, 48–54 (2018).

    Article  Google Scholar 

  17. Xu, Y. et al. Chemical and light-driven oxidation of water catalyzed by an efficient dinuclear ruthenium complex. Angew. Chem. Int. Ed. 49, 8934–8937 (2010).

    Article  CAS  Google Scholar 

  18. Gersten, S. W., Samuels, G. J. & Meyer, T. J. Catalytic-oxidation of water by an oxo-bridged ruthenium dimer. J. Am. Chem. Soc. 104, 4029–4030 (1982).

    Article  CAS  Google Scholar 

  19. Duan, L., Wang, L., Li, F., Li, F. & Sun, L. Highly efficient bioinspired molecular Ru water oxidation catalysts with negatively charged backbone ligands. Acc. Chem. Res. 48, 2084–2096 (2015).

    Article  CAS  Google Scholar 

  20. Yin, Q. et al. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 328, 342–345 (2010).

    Article  CAS  Google Scholar 

  21. Okamura, M. et al. A pentanuclear iron catalyst designed for water oxidation. Nature 530, 465–468 (2016).

    Article  CAS  Google Scholar 

  22. Shaffer, D. W., Xie, Y. & Concepcion, J. J. O–O bond formation in ruthenium-catalyzed water oxidation: single-site nucleophilic attack vs. O–O radical coupling. Chem. Soc. Rev. 46, 6170–6193 (2017).

    Article  CAS  Google Scholar 

  23. Meyer, T. J., Sheridan, M. V. & Sherman, B. D. Mechanisms of molecular water oxidation in solution and on oxide surfaces. Chem. Soc. Rev. 46, 6148–6169 (2017).

    Article  CAS  Google Scholar 

  24. Ma, L. et al. Cerium(iv)-driven water oxidation catalyzed by a manganese(v)-nitrido complex. Angew. Chem. Int. Ed. 54, 5246–5249 (2015).

    Article  CAS  Google Scholar 

  25. Ellis, W. C., McDaniel, N. D., Bernhard, S. & Collins, T. J. Fast water oxidation using iron. J. Am. Chem. Soc. 132, 10990–10991 (2010).

    Article  CAS  Google Scholar 

  26. Duan, L. et al. A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II. Nat. Chem. 4, 418–423 (2012).

    Article  CAS  Google Scholar 

  27. Hull, J. F. et al. Highly active and robust Cp* iridium complexes for catalytic water oxidation. J. Am. Chem. Soc. 131, 8730–8731 (2009).

    Article  CAS  Google Scholar 

  28. Lee, W.-T., Munoz, S. B., Dickie, D. A. & Smith, J. M. Ligand modification transforms a catalase mimic into a water oxidation catalyst. Angew. Chem. Int. Ed. 53, 9856–9859 (2014).

    Article  CAS  Google Scholar 

  29. Sun, Y., Hu, X., Luo, W., Xia, F. & Huang, Y. Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv. Funct. Mater. 23, 2436–2444 (2013).

    Article  CAS  Google Scholar 

  30. Xue, Y. et al. Low temperature growth of highly nitrogen-doped single crystal graphene arrays by chemical vapor deposition. J. Am. Chem. Soc. 134, 11060–11063 (2012).

    Article  CAS  Google Scholar 

  31. Schnegg, A. et al. Probing the fate of Mn complexes in Nafion: a combined multifrequency EPR and XAS study. J. Phys. Chem. C 120, 853–861 (2016).

    Article  CAS  Google Scholar 

  32. Colmer, H. E., Howcroft, A. W. & Jackson, T. A. Formation, characterization, and O–O bond activation of a peroxomanganese(iii) complex supported by a cross-clamped cyclam ligand. Inorg. Chem. 55, 2055–2069 (2016).

    Article  CAS  Google Scholar 

  33. Gallagher, A. T. et al. A structurally-characterized peroxomanganese(iv) porphyrin from reversible O2 binding within a metal-organic framework. Chem. Sci. 9, 1596–1603 (2018).

    Article  CAS  Google Scholar 

  34. He, M., Li, X., Liu, Y. & Li, J. Axial Mn–C–CN bonds of cyano manganese(ii) porphyrin complexes: flexible and weak? Inorg. Chem. 55, 5871–5879 (2016).

    Article  CAS  Google Scholar 

  35. Fei, H. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63–72 (2018).

    Article  Google Scholar 

  36. Zitolo, A. et al. Identification of catalytic sites for oxygen reduction in iron-and nitrogen-doped graphene materials. Nat. Mater. 14, 937–942 (2015).

    Article  CAS  Google Scholar 

  37. Li, Y.-Y., Ye, K., Siegbahn, P. E. M. & Liao, R.-Z. Mechanism of water oxidation catalyzed by a mononuclear manganese complex. ChemSusChem 10, 903–911 (2017).

    Article  CAS  Google Scholar 

  38. Norskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  CAS  Google Scholar 

  39. Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011).

    Article  CAS  Google Scholar 

  40. Garcia-Mota, M. et al. Importance of correlation in determining electrocatalytic oxygen evolution activity on cobalt oxides. J. Phys. Chem. C 116, 21077–21082 (2012).

    Article  CAS  Google Scholar 

  41. Su, H.-Y. et al. Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis. Phys. Chem. Chem. Phys. 14, 14010–14022 (2012).

    Article  CAS  Google Scholar 

  42. Xu, H., Cheng, D., Cao, D. & Zeng, X. C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 1, 339–348 (2018).

    Article  Google Scholar 

  43. Fernando, A. & Aikens, C. M. Theoretical investigation of water oxidation catalysis by a model manganese cubane complex. J. Phys. Chem. C 120, 21148–21161 (2016).

    Article  CAS  Google Scholar 

  44. Britt, R. D., Suess, D. L. M. & Stich, T. A. An Mn(v)-oxo role in splitting water? Proc. Natl Acad. Sci. USA 112, 5265–5266 (2015).

    Article  CAS  Google Scholar 

  45. Busch, M., Ahlberg, E. & Panas, I. Electrocatalytic oxygen evolution from water on a Mn(iiiv) dimer model catalyst—a DFT perspective. Phys. Chem. Chem. Phys. 13, 15069–15076 (2011).

    Article  CAS  Google Scholar 

  46. Siegbahn, P. E. M. Water oxidation mechanism in photosystem II, including oxidations, proton release pathways, O–O bond formation and O2 release. Biochim. Biophys. Acta Bioenergy 1827, 1003–1019 (2013).

    Article  CAS  Google Scholar 

  47. Segre, C. U. et al. The MRCAT insertion device beamline at the Advanced Photon Source. AIP Conf. Proc. 521, 419–422 (2000).

    Article  Google Scholar 

  48. Stern, E. A., Elam, W. T., Bunker, B. A., Lu, K. Q. & Heald, S. M. Ion chambers for fluorescence and laboratory EXAFS detection. Nucl. Instrum. Methods Phys. Res. 195, 345–346 (1982).

    Article  CAS  Google Scholar 

  49. Ravel, B. N. M. & Newville, M. Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  Google Scholar 

  50. Stern, E. A., Heald, S. M. & Koch, E. Handbook on Synchrotron Radiation (North-Holland, Amsterdam, 1983).

    Google Scholar 

  51. Kresse, G. & Hafner, J. Abinitio molecular-dynamics for liquid-metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  52. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  53. Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation-energy. Phys. Rev. B 45, 13244–13249 (1992).

    Article  CAS  Google Scholar 

  54. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  CAS  Google Scholar 

  55. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  56. Kwapien, K., Piccinin, S. & Fabris, S. Energetics of water oxidation catalyzed by cobalt oxide nanoparticles: assessing the accuracy of DFT and DFT plus U approaches against coupled cluster methods. J. Phys. Chem. Lett. 4, 4223–4230 (2013).

    Article  CAS  Google Scholar 

  57. Wang, L.-P. & Van Voorhis, T. Direct-coupling O2 bond forming a pathway in cobalt oxide water oxidation catalysts. J. Phys. Chem. Lett. 2, 2200–2204 (2011).

    Article  CAS  Google Scholar 

  58. Li, X. & Siegbahn, P. E. Water oxidation mechanism for synthetic Co–oxides with small nuclearity. J. Am. Chem. Soc. 135, 13804–13813 (2013).

    Article  CAS  Google Scholar 

  59. Mathew, K., Sundararaman, R., Letchworth-Weaver, K., Arias, T. & Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084106 (2014).

    Article  Google Scholar 

  60. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article  CAS  Google Scholar 

  61. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article  CAS  Google Scholar 

  62. Krukau, A. V., Vydrov, O. A., Izmaylov, A. F. & Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 224106 (2006).

    Article  Google Scholar 

  63. Grant, R. W., Geller, S., Cape, J. A. & Espinosa, G. P. Magnetic and crystallographic transitions in α-Mn2O3–Fe2O3 system. Phys. Rev. 175, 686–695 (1968).

    Article  CAS  Google Scholar 

  64. Busch, M., Ahlberg, E. & Panas, I. Hydroxide oxidation and peroxide formation at embedded binuclear transition metal sites; TM = Cr, Mn, Fe, Co. Phys. Chem. Chem. Phys. 13, 15062–15068 (2011).

    Article  CAS  Google Scholar 

  65. Yancey, D. F. et al. A theoretical and experimental examination of systematic ligand-induced disorder in Au dendrimer-encapsulated nanoparticles. Chem. Sci. 4, 2912–2921 (2013).

    Article  CAS  Google Scholar 

  66. Duan, Z. et al. A combined theoretical and experimental EXAFS study of the structure and dynamics of Au 147 nanoparticles. Catal. Sci. Technol. 6, 6879–6885 (2016).

    Article  CAS  Google Scholar 

  67. Zabinsky, S., Rehr, J., Ankudinov, A., Albers, R. & Eller, M. Multiple-scattering calculations of X-ray-absorption spectra. Phys. Rev. B 52, 2995–3009 (1995).

    Article  CAS  Google Scholar 

  68. Hu, X. L., Piccinin, S., Laio, A. & Fabris, S. Atomistic structure of cobalt-phosphate nanoparticles for catalytic water oxidation. ACS Nano 6, 10497–10504 (2012).

    Article  CAS  Google Scholar 

  69. Chen, Z. et al. Amorphous cobalt oxide nanoparticles as active water-oxidation catalysts. ChemCatChem 9, 3641–3645 (2017).

    Article  CAS  Google Scholar 

  70. Guan, J. et al. CoOx nanoparticle anchored on sulfonated-graphite as efficient water oxidation catalyst. Chem. Sci. 8, 6111–6116 (2017).

    Article  CAS  Google Scholar 

  71. Guan, J. et al. Synthesis and demonstration of subnanometric iridium oxide as highly efficient and robust water oxidation catalyst. ACS Catal. 7, 5983–5986 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21633010), the 973 National Basic Research Program of China (No. 2014CB239403), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB17000000) and Honeywell UOP research cooperation (No. 13C0008). Special acknowledgement goes to the assistance of M. Charochak of UOP and J. Wright of IIT for assistance with data collection at MRCAT, and S. Pennycook of NUS for providing the HAADF-STEM device.

Author information

Authors and Affiliations

Authors

Contributions

C.L. conceived the project. J.G., F.Z. and J.Q.C. designed the experiments. J.G. performed synthesis, characterization and catalytic reaction experiments. Q.H. performed some catalytic reaction experiments. Z.D. and M.D. performed the DFT calculations. S.D.K. and R.S. measured the XAFS spectra. C.T. measured the HAADF-STEM images of Mn-NG. J.G., C.L. and Z.D. analysed the data and co-wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Can Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–29, Supplementary Tables 1–5, Supplementary Note 1, Supplementary Methods and Supplementary References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, J., Duan, Z., Zhang, F. et al. Water oxidation on a mononuclear manganese heterogeneous catalyst. Nat Catal 1, 870–877 (2018). https://doi.org/10.1038/s41929-018-0158-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-018-0158-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing