Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core–shell electrocatalysts

Abstract

The electro-oxidation of water to oxygen is expected to play a major role in the development of future electrochemical energy conversion and storage technologies. However, the slow rate of the oxygen evolution reaction remains a key challenge that requires fundamental understanding to facilitate the design of more active and stable electrocatalysts. Here, we probe the local geometric ligand environment and electronic metal states of oxygen-coordinated iridium centres in nickel-leached IrNi@IrOx metal oxide core–shell nanoparticles under catalytic oxygen evolution conditions using operando X-ray absorption spectroscopy, resonant high-energy X-ray diffraction and differential atomic pair correlation analysis. Nickel leaching during catalyst activation generates lattice vacancies, which in turn produce uniquely shortened Ir–O metal ligand bonds and an unusually large number of d-band holes in the iridium oxide shell. Density functional theory calculations show that this increase in the formal iridium oxidation state drives the formation of holes on the oxygen ligands in direct proximity to lattice vacancies. We argue that their electrophilic character renders these oxygen ligands susceptible to nucleophilic acid–base-type O–O bond formation at reduced kinetic barriers, resulting in strongly enhanced reactivities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Morphology and catalytic OER activity of pure IrOx and IrNiOx core–shell nanoparticles.
Fig. 2: Electronic structure of iridium centres in IrOx and IrNiOx core–shell nanoparticles.
Fig. 3: Local geometric structure of iridium centres in IrOx and nickel-leached, lattice defect-rich IrNiOx core–shell nanoparticles.
Fig. 4: Computed electronic structure of iridium oxides with various metal-vacancy densities.
Fig. 5: Long-range order, element-specific atomic pair correlations and a structure model.
Fig. 6: Iridium sites under OER in the nickel-leached IrOx shell of IrNi@IrOx core–shell nanoparticles.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Dau, H. et al. The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem 2, 724–761 (2010).

    Article  CAS  Google Scholar 

  2. Olah, G. A., Goeppert, A. & Prakash, G. K. S. Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J. Org. Chem. 74, 487–498 (2009).

    Article  CAS  Google Scholar 

  3. Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011).

    Article  CAS  Google Scholar 

  4. Xu, J. et al. Oxygen evolution catalysts on supports with a 3-D ordered array structure and intrinsic proton conductivity for proton exchange membrane steam electrolysis. Energy Environ. Sci. 7, 820–830 (2014).

    Article  CAS  Google Scholar 

  5. Reier, T., Nong, H. N., Teschner, D., Schlögl, R. & Strasser, P. Electrocatalytic oxygen evolution reaction in acidic environments—reaction mechanisms and catalysts. Adv. Energy Mater. 7, 1601275 (2017).

    Article  Google Scholar 

  6. Reier, T., Oezaslan, M. & Strasser, P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal. 2, 1765–1772 (2012).

    Article  CAS  Google Scholar 

  7. Cherevko, S. et al. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: a comparative study on activity and stability. Catal. Today 262, 170–180 (2016).

    Article  CAS  Google Scholar 

  8. Carmo, M., Fritz, D. L., Mergel, J. & Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 38, 4901–4934 (2013).

    Article  CAS  Google Scholar 

  9. Nong, H. N., Gan, L., Willinger, E., Teschner, D. & Strasser, P. IrOx core–shell nanocatalysts for cost- and energy-efficient electrochemical water splitting. Chem. Sci. 5, 2955–2963 (2014).

    Article  CAS  Google Scholar 

  10. Reier, T. et al. Molecular insight in structure and activity of highly efficient, low-Ir Ir–Ni oxide catalysts for electrochemical water splitting (OER). J. Am. Chem. Soc. 137, 13031–13040 (2015).

    Article  CAS  Google Scholar 

  11. Seitz, L. C. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353, 1011–1014 (2016).

    Article  CAS  Google Scholar 

  12. Strasser, P. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010).

    Article  CAS  Google Scholar 

  13. Zhang, Z. et al. One-pot synthesis of highly anisotropic five-fold-twinned PtCu nanoframes used as a bifunctional electrocatalyst for oxygen reduction and methanol oxidation. Adv. Mater. 28, 8712–8717 (2016).

    Article  CAS  Google Scholar 

  14. Zhang, Z. et al. Submonolayered Ru deposited on ultrathin Pd nanosheets used for enhanced catalytic applications. Adv. Mater. 28, 10282–10286 (2016).

    Article  CAS  Google Scholar 

  15. Fan, Z. et al. Synthesis of 4H/fcc-Au@M (M = Ir, Os, IrOs) core–shell nanoribbons for electrocatalytic oxygen evolution reaction. Small 12, 3908–3913 (2016).

    Article  CAS  Google Scholar 

  16. Kötz, R., Neff, H. & Stucki, S. Anodic iridium oxide films: XPS studies of oxidation state changes and O2 evolution. J. Electrochem. Soc. 131, 72–77 (1984).

    Article  Google Scholar 

  17. Sanchez Casalongue, H. G. et al. In situ observation of surface species on iridium oxide nanoparticles during the oxygen evolution reaction. Angew. Chem. Int. Ed. 53, 7169–7172 (2014).

    Article  Google Scholar 

  18. Mo, Y. et al. In situ iridium LIII-edge X-ray absorption and surface enhanced Raman spectroscopy of electrodeposited iridium oxide films in aqueous electrolytes. J. Phys. Chem. B 106, 3681–3686 (2002).

    Article  CAS  Google Scholar 

  19. Hillman, A. R., Skopek, M. A. & Gurman, S. J. X-ray spectroscopy of electrochemically deposited iridium oxide films: detection of multiple sites through structural disorder. Phys. Chem. Chem. Phys. 13, 5252–5263 (2011).

    Article  CAS  Google Scholar 

  20. Pfeifer, V. et al. The electronic structure of iridium oxide electrodes active in water splitting. Phys. Chem. Chem. Phys. 18, 2292–2296 (2016).

    Article  CAS  Google Scholar 

  21. Lee, Y., Suntivich, J., May, K. J., Perry, E. E. & Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 3, 399–404 (2012).

    Article  CAS  Google Scholar 

  22. Wang, C. et al. Synthesis of Cu–Ir nanocages with enhanced electrocatalytic activity for the oxygen evolution reaction. J. Mater. Chem. A 3, 19669–19673 (2015).

    Article  CAS  Google Scholar 

  23. Lettenmeier, P. et al. Nanosized IrOx–Ir catalyst with relevant activity for anodes of proton exchange membrane electrolysis produced by a cost-effective procedure. Angew. Chem. Int. Ed. 55, 742–746 (2016).

    Article  CAS  Google Scholar 

  24. Grimaud, A. et al. Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction. Nat. Energy 2, 16189 (2016).

    Article  Google Scholar 

  25. Kodintsev, I. M., Trasatti, S., Rubel, M., Wieckowski, A. & Kaufher, N. X-ray photoelectron spectroscopy and electrochemical surface characterization of iridium(iv) oxide + ruthenium(iv) oxide electrodes. Langmuir 8, 283–290 (1992).

    Article  CAS  Google Scholar 

  26. Diaz-Morales, O. et al. Iridium-based double perovskites for efficient water oxidation in acid media. Nat. Commun. 7, 12363 (2016).

    Article  CAS  Google Scholar 

  27. Brown, M., Peierls, R. E. & Stern, E. A. White lines in X-ray absorption. Phys. Rev. B 15, 738–744 (1977).

    Article  CAS  Google Scholar 

  28. Clancy, J. P. et al. Spin-orbit coupling in iridium-based 5d compounds probed by X-ray absorption spectroscopy. Phys. Rev. B 86, 195131 (2012).

    Article  Google Scholar 

  29. Choy, J.-H., Kim, D.-K., Demazeau, G. & Jung, D.-Y. LIII-edge XANES study on unusually high valent iridium in a perovskite lattice. J. Phys. Chem. 98, 6258–6262 (1994).

    Article  CAS  Google Scholar 

  30. Choy, J.-H., Kim, D.-K., Hwang, S.-H., Demazeau, G. & Jung, D.-Y. XANES and EXAFS studies on the Ir–O bond covalency in ionic iridium perovskites. J. Am. Chem. Soc. 117, 8557–8566 (1995).

    Article  CAS  Google Scholar 

  31. Frazer, E. J. & Woods, R. The oxygen evolution reaction on cycled iridium electrodes. J. Electroanal. Chem. 102, 127–130 (1979).

    Article  CAS  Google Scholar 

  32. Conway, B. E. & Mozota, J. Surface and bulk processes at oxidized iridium electrodes II. Conductivity-switched behaviour of thick oxide films. Electrochim. Acta 28, 9–16 (1983).

    Article  CAS  Google Scholar 

  33. Mozota, J. & Conway, B. E. Surface and bulk processes at oxidized iridium electrodes I. Monolayer stage and transition to reversible multilayer oxide film behaviour. Electrochim. Acta 28, 1–8 (1983).

    Article  CAS  Google Scholar 

  34. Cherevko, S. et al. Stability of nanostructured iridium oxide electrocatalysts during oxygen evolution reaction in acidic environment. Electrochem. Commun. 48, 81–85 (2014).

    Article  CAS  Google Scholar 

  35. Reier, T. et al. Electrocatalytic oxygen evolution on iridium oxide: uncovering catalyst–substrate interactions and active iridium oxide species. J. Electrochem. Soc. 161, F876–F882 (2014).

    Article  CAS  Google Scholar 

  36. Lengke, M. F. et al. Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(iii)−chloride complex. Environ. Sci. Technol. 40, 6304–6309 (2006).

    Article  CAS  Google Scholar 

  37. Rand, D. A. J. & Woods, R. Cyclic voltammetric studies on iridium electrodes in sulphuric acid solutions: nature of oxygen layer and metal dissolution. J. Electroanal. Chem. Interfacial Electrochem. 55, 375–381 (1974).

    Article  CAS  Google Scholar 

  38. Rand, D. A. J., Michell, D. & Woods, R. Cyclic voltammetric studies on iridium electrodes in sulphuric acid solutions: nature of oxygen layer and metal dissolution. In Proc. Symposium on Electrode Materials and Processes for Energy Conversion and Storage (eds McIntyre, J. D. E., Srinivasan, S. & Will, F. G.) 217–233 (Electrochemical Society, 1977).

  39. Görlin, M. et al. Oxygen evolution reaction dynamics, Faradaic charge efficiency, and the active metal redox states of Ni–Fe oxide water splitting electrocatalysts. J. Am. Chem. Soc. 138, 5603–5614 (2016).

    Article  Google Scholar 

  40. Shannon, R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 32, 751–767 (1976).

    Article  Google Scholar 

  41. Abbott, D. F. et al. Iridium oxide for the oxygen evolution reaction: correlation between particle size, morphology, and the surface hydroxo layer from operando XAS. Chem. Mater. 28, 6591–6604 (2016).

    Article  CAS  Google Scholar 

  42. Bolzan, A. A., Fong, C., Kennedy, B. J. & Howard, C. J. Structural studies of rutile-type metal dioxides. Acta Cryst. 53, 373–380 (1997).

    Article  Google Scholar 

  43. Arikawa, T., Takasu, Y., Murakami, Y., Asakura, K. & Iwasawa, Y. Characterization of the structure of RuO2−IrO2/Ti electrodes by EXAFS. J. Phys. Chem. B 102, 3736–3741 (1998).

    Article  CAS  Google Scholar 

  44. Shannon, R. D. & Vincent, H. Relationships Between Covalency, Interatomic Distances, and Magnetic Properties in Halides and Chalcogenides (Springer, Berlin & Heidelberg, 1974).

  45. Willinger, E., Massué, C., Schlögl, R. & Willinger, M. G. Identifying key structural features of IrOx water splitting catalysts. J. Am. Chem. Soc. 139, 12093–12101 (2017).

    Article  CAS  Google Scholar 

  46. Weber, D. et al. Trivalent iridium oxides: layered triangular lattice iridate K0.75Na0.25IrO2 and oxyhydroxide IrOOH. Chem. Mater. 29, 8338–8345 (2017).

    Article  CAS  Google Scholar 

  47. Ushakov, A. V., Streltsov, S. V. & Khomskii, D. I. Crystal field splitting in correlated systems with negative charge-transfer gap. J. Phys. Condens. Matter. 23, 445601 (2011).

    Article  CAS  Google Scholar 

  48. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

  49. Pfeifer, V. et al. In situ observation of reactive oxygen species forming on oxygen-evolving iridium surfaces. Chem. Sci. 8, 2143–2149 (2017).

    Article  CAS  Google Scholar 

  50. Betley, T. A., Wu, Q., Van Voorhis, T. & Nocera, D. G. Electronic design criteria for O−O bond formation via metal−oxo complexes. Inorg. Chem. 47, 1849–1861 (2008).

    Article  CAS  Google Scholar 

  51. Mavros, M. G. et al. What can density functional theory tell us about artificial catalytic water splitting? Inorg. Chem. 53, 6386–6397 (2014).

    Article  CAS  Google Scholar 

  52. Fierro, S., Nagel, T., Baltruschat, H. & Comninellis, C. Investigation of the oxygen evolution reaction on Ti/IrO2 electrodes using isotope labelling and on-line mass spectrometry. Electrochem. Commun. 9, 1969–1974 (2007).

    Article  CAS  Google Scholar 

  53. Strasser, P. Free electrons to molecular bonds and back: closing the energetic oxygen reduction (ORR)–oxygen evolution (OER) cycle using core–shell nanoelectrocatalysts. Acc. Chem. Res. 49, 2658–2668 (2016).

    Article  CAS  Google Scholar 

  54. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 12, 537–541 (2005).

    Article  CAS  Google Scholar 

  55. Zabinsky, S. I., Rehr, J. J., Ankudinov, A., Albers, R. C. & Eller, M. J. Multiple-scattering calculations of X-ray-absorption spectra. Phys. Rev. B 52, 2995–3009 (1995).

    Article  CAS  Google Scholar 

  56. Horsley, J. A. Relationship between the area of L2,3 X‐ray absorption edge resonances and the d orbital occupancy in compounds of platinum and iridium. J. Chem. Phys. 76, 1451–1458 (1982).

    Article  CAS  Google Scholar 

  57. Starace, A. F. Potential-barrier effects in photoabsorption. I. General theory. Phys. Rev. B 5, 1773–1784 (1972).

    Article  Google Scholar 

  58. Lytle, F. W. & Greegor, R. B. Investigation of the “join” between the near edge and extended X‐ray absorption fine structure. Appl. Phys. Lett. 56, 192–194 (1990).

    Article  CAS  Google Scholar 

  59. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 21, 395502 (2009).

    Article  Google Scholar 

  60. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  61. Ping, Y., Galli, G. & Goddard, W. A. Electronic structure of IrO2: the role of the metal d orbitals. J. Phys. Chem. C 119, 11570–11577 (2015).

    Article  CAS  Google Scholar 

  62. Dal Corso, A. Pseudopotentials periodic table: from H to Pu. Comput. Mater. Sci. 95, 337–350 (2014).

    Article  CAS  Google Scholar 

  63. Marzari, N., Vanderbilt, D., De Vita, A. & Payne, M. C. Thermal contraction and disordering of the Al(110) surface. Phys. Rev. Lett. 82, 3296–3299 (1999).

    Article  CAS  Google Scholar 

  64. Fuoss, P. H., Eisenberger, P., Warburton, W. K. & Bienenstock, A. Application of differential anomalous X-ray scattering to structural studies of amorphous materials. Phys. Rev. Lett. 46, 1537–1540 (1981).

    Article  CAS  Google Scholar 

  65. Petkov, V. & Shastri, S. D. Element-specific structure of materials with intrinsic disorder by high-energy resonant X-ray diffraction and differential atomic pair-distribution functions: a study of PtPd nanosized catalysts. Phys. Rev. B 81, 165428 (2010).

    Article  Google Scholar 

  66. Waseda, Y. Anomalous X-Ray Scattering for Materials Characterization: Atomic-Scale Structure Determination (Springer, 2002).

  67. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Zentraleinrichtung für Elektronenmikroskopie of the Technische Universität Berlin for support with the TEM technique and R. Loukrakpam for recording the TEM micrographs. Financial support from the German Research Foundation through grant STR 596/3-1/-2 under Priority Program 1613 is gratefully acknowledged. We thank the Helmholtz-Zentrum Berlin for allocation of synchrotron radiation beamtime under the proposal 14201762-ST/R, I. Zizak for technical support at the μSpot beamline of BESSY, A. Bergmann (Fritz Haber Institute of the Max Planck Society) for contributing to data collection at BESSY and S. Shastri (APS, Argonne National Laboratory) for helping with the HE-XRD measurements. This work was supported in part by DOE-BES grant DE-SC0006877. The work also used resources of the Advanced Photon Source at the Argonne National Laboratory provided by the DOE Office of Science under contract number DE-AC02-06CH11357. We acknowledge the Höchstleistungsrechenzentrum Stuttgart for access to the supercomputer Hazel Hen. T.J. acknowledges the Alexander von Humboldt Foundation for financial support.

Author information

Authors and Affiliations

Authors

Contributions

P.S. and H.N.N. conceived and designed the experiments. H.N.N. carried out the chemical synthesis and electrochemical experiments, and analysed the results. H.N.N., T.R. and H.-S.O. performed the operando XAS experiments. H.N.N. analysed the XAS data. V.P. carried out the resonant HE-XRD measurements and analysed the data. M.G. acquired the TEM images. T.J. carried out the DFT calculations. P.P. and M.H. performed the STEM-EDX measurements. H.N.N., P.S., T.J. and V.P. wrote the manuscript. All authors discussed the results, drew conclusions and commented on the manuscript.

Corresponding authors

Correspondence to Travis Jones or Peter Strasser.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–10, Supplementary Tables 1–4 and Supplementary References

Supplementary Video 1

3D model of an IrNiOx particle with a size of approximately 9 × 6.5 × 5 nm (Figure 5c). Large grey and green balls represent, respectively, 1,609 Ir and 548 Ni atoms forming the particle’s core. Small grey and red balls represent, respectively, 3,766 Ir and 9,761 O atoms forming the particle’s shell. Note that Ir atoms from the shell are sixfold coordinated (short grey bars) by oxygen atoms thus forming [IrO6] octahedra. The model is optimized in terms of energy by Molecular Dynamics and refined against the experimental atomic pair distribution data by reverse Monte Carlo as described in the Supplementary Methods

Supplementary Video 2

3D model of an IrNiOx particle with a size of approximately 9 × 6.5 × 5 nm (Figure 5c). The (Ir1609Ni548)-atom core of the particle is covered up by an (Ir3766O9761)-atom shell. Note that Ir atoms from the shell are sixfold coordinated by oxygen atoms (red balls) thus forming [IrO6] octahedra (in grey). The octahedra are linked together forming a continuous network riddled with Ir vacancies. The model is optimized in terms of energy by Molecular Dynamics and refined against the experimental atomic pair distribution data by reverse Monte Carlo as described in the Supplementary Methods

Supplementary Data

Cartesian coordinates of the 3D model of an IrNiOx core–shell particle

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nong, H.N., Reier, T., Oh, HS. et al. A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core–shell electrocatalysts. Nat Catal 1, 841–851 (2018). https://doi.org/10.1038/s41929-018-0153-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-018-0153-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing