Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solar energy-driven lignin-first approach to full utilization of lignocellulosic biomass under mild conditions

Abstract

The lignin-first concept offers an opportunity to utilize the entire lignocellulosic biomass efficiently. However, current conversion strategies rely on high-temperature hydrogenolysis by supported metal catalysts, leading to low-functionalized products or difficulty in separation of solid catalyst from cellulose/hemicellulose. Here, we report the fractionation and valorization of lignocellulose via solar energy-driven conversion of native lignin at room temperature. We found that cadmium sulfide quantum dots not only catalyse the cleavage of β-O-4 bonds in lignin models quantitatively but also are efficient for the conversion of native lignin within biomass into functionalized aromatics under visible light, while cellulose/hemicellulose remain almost intact. Further, the colloidal character of quantum dots enables their facile separation and recycling by a reversible aggregation–colloidization strategy. The β-O-4 bond in lignin is cleaved by an electron–hole coupled photoredox mechanism based on a Cα radical intermediate, in which both photogenerated electrons and holes participate in the reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Routes for the valorization of lignocellulosic biomass.
Fig. 2: Photocatalytic cleavage of β-O-4 bond in lignin model compounds.
Fig. 3: Photocatalytic conversion of native lignin in birch woodmeal.
Fig. 4: Valorization of entire lignocellulosic biomass.
Fig. 5: Mechanism for solar energy-driven cleavage of β-O-4 bond.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Tuck, C. O., Pérez, E., Horváth, I. T., Sheldon, R. A. & Poliakoff, M. Valorization of biomass: deriving more value from waste. Science 337, 695–699 (2012).

    Article  CAS  Google Scholar 

  2. Ragauskas, A. J. et al. Lignin valorization: improving lignin processing in the biorefinery. Science 344, 1246843 (2014).

    Article  Google Scholar 

  3. Galkin, M. V. & Samec, J. S. Lignin valorization through catalytic lignocellulose fractionation: a fundamental platform for the future biorefinery. ChemSusChem 9, 1544–1558 (2016).

    Article  CAS  Google Scholar 

  4. Renders, T., Van den Bosch, S., Koelewijn, S. F., Schutyser, W. & Sels, B. F. Lignin-first biomass fractionation: the advent of active stabilisation strategies. Energy Environ. Sci. 10, 1551–1557 (2017).

    Article  CAS  Google Scholar 

  5. Zakzeski, J., Bruijnincx, P. C. A., Jongerius, A. L. & Weckhuysen, B. M. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599 (2010).

    Article  CAS  Google Scholar 

  6. Xu, C., Arancon, R. A. D., Labidi, J. & Luque, R. Lignin deploymerisation strategies: towards valuable chemicals and fuels. Chem. Soc. Rev. 43, 7485–7500 (2014).

    Article  CAS  Google Scholar 

  7. Li, C., Zhao, X., Wang, A., Huber, G. W. & Zhang, T. Catalytic transformation of lignin for the production of chemicals and fuels. Chem. Rev. 115, 11559–11624 (2015).

    Article  CAS  Google Scholar 

  8. Rinaldi, R. et al. Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew. Chem. Int. Ed. 55, 8164–8215 (2016).

    Article  CAS  Google Scholar 

  9. Yan, N. et al. Selective degradation of wood lignin over noble-metal catalysts in a two-step process. ChemSusChem 1, 626–629 (2008).

    Article  CAS  Google Scholar 

  10. Matson, T. D., Barta, K., Iretskii, A. V. & Ford, P. C. One-pot catalytic conversion of cellulose and of woody biomass solids to liquid fuels. J. Am. Chem. Soc. 133, 14090–14097 (2011).

    Article  CAS  Google Scholar 

  11. Li, C., Zheng, M., Wang, A. & Zhang, T. One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts: simultaneous conversion of cellulose, hemicellulose and lignin. Energy Environ. Sci. 5, 6383–6390 (2012).

    Article  CAS  Google Scholar 

  12. Xia, Q. et al. Direct hydrodeoxygenation of raw woody biomass into liquid alkanes. Nat. Commun. 7, 11162 (2016).

    Article  Google Scholar 

  13. Van den Bosch, S. et al. Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps. Energy Environ. Sci. 8, 1748–1763 (2015).

    Article  Google Scholar 

  14. Sun, Z. et al. Complete lignocellulose conversion with integrated catalyst recycling yielding valuable aromatics and fuels. Nat. Catal. 1, 82–92 (2018).

    Article  Google Scholar 

  15. Song, Q. et al. Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation–hydrogenolysis process. Energy Environ. Sci. 6, 994–1007 (2013).

    Article  CAS  Google Scholar 

  16. Ferrini, P. & Rinaldi, R. Catalytic biorefining of plant biomass to non-pyrolytic lignin bio-oil and carbohydrates through hydrogen transfer reactions. Angew. Chem. Int. Ed. 53, 8634–8639 (2014).

    Article  CAS  Google Scholar 

  17. Kim, S. et al. Computational study of bond dissociation enthalpies for a large range of native and modified lignins. J. Phys. Chem. Lett. 2, 2846–2852 (2001).

    Article  Google Scholar 

  18. Lanzalunga, O. & Bietti, M. Photo- and radiation chemical induced degradation of lignin model compounds. J. Photochem. Photobiol. B 56, 85–108 (2000).

    Article  CAS  Google Scholar 

  19. Li, S. H., Liu, S., Colmenares, J. C. & Xu, Y. J. A sustainable approach for lignin valorization by heterogeneous photocatalysis. Green. Chem. 18, 594–607 (2016).

    Article  Google Scholar 

  20. Nguyen, J. D., Matsuura, B. S. & Stephenson, C. R. J. A photochemical strategy for lignin degradation at room temperature. J. Am. Chem. Soc. 136, 1218–1221 (2014).

    Article  CAS  Google Scholar 

  21. Bosque, I. et al. Redox catalysis facilitates lignin depolymerization. ACS Cent. Sci. 3, 249–621 (2017).

    Article  Google Scholar 

  22. Luo, N. et al. Photocatalytic oxidation–hydrogenolysis of lignin β-O-4 models via a dual light wavelength switching strategy. ACS Catal. 6, 7716–7721 (2016).

    Article  CAS  Google Scholar 

  23. Luo, N. et al. Visible-light-driven self-hydrogen transfer hydrogenolysis of lignin models and extracts into phenolic products. ACS Catal. 7, 4571–4580 (2017).

    Article  CAS  Google Scholar 

  24. Zhao, J., Holmes, M. A. & Osterloh, F. E. Quantum confinement controls photocatalysis: a free energy analysis for photocatalytic proton reduction at CdSe nanocrystals. ACS Nano 7, 4316–4325 (2013).

    Article  CAS  Google Scholar 

  25. Zhao, L. M. et al. Photocatalysis with quantum dots and visible light: selective and efficient oxidation of alcohols to carbonyl compounds through a radical relay process in water. Angew. Chem. Int. Ed. 56, 3020–3024 (2017).

    Article  CAS  Google Scholar 

  26. Simon, T. et al. Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat. Mater. 13, 1013–1018 (2014).

    Article  CAS  Google Scholar 

  27. Deuss, P. J., Barta, K. & de Vries, J. G. Homogeneous catalysis for the conversion of biomass and biomass-derived platform chemicals. Catal. Sci. Technol. 4, 1174–1196 (2014).

    Article  CAS  Google Scholar 

  28. Rinaldi, R. & Schüth, F. Design of solid catalysts for the conversion of biomass. Energy Environ. Sci. 2, 610–626 (2009).

    Article  CAS  Google Scholar 

  29. Boles, M. A., Ling, D., Hyeon, T. & Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 15, 141–153 (2016).

    Article  CAS  Google Scholar 

  30. Yuan, T. Q., Sun, S. N., Xu, F. & Sun, R. C. Characterization of lignin structures and lignin–carbohydrate complex (LCC) linkages by quantitative 13C and 2D HSQC NMR spectroscopy. J. Agric. Food Chem. 59, 10604–10614 (2011).

    Article  CAS  Google Scholar 

  31. Rahimi, A., Ulbrich, A., Coon, J. J. & Stahl, S. S. Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature 515, 249–252 (2014).

    Article  CAS  Google Scholar 

  32. Lancefield, C. S., Ojo, O. S., Tran, F. & Westwood, N. J. Isolation of functionalized phenolic monomers through selective oxidation and C–O bond cleavage of the β-O-4 linkages in lignin. Angew. Chem. Int. Ed. 54, 258–262 (2015).

    Article  CAS  Google Scholar 

  33. Deng, W. et al. Oxidative conversion of lignin and lignin model compounds catalyzed by CeO2-supported Pd nanoparticles. Green. Chem. 17, 5009–5018 (2015).

    Article  CAS  Google Scholar 

  34. Cheng, J., Sulpizi, M., VandeVondele, J. & Sprik, M. Hole localization and thermochemistry of oxidative dehydrogenation of aqueous rutile TiO2 (110). ChemCatChem 4, 636–640 (2012).

    Article  CAS  Google Scholar 

  35. Cheng, J., Liu, X., VandeVondele, J., Sulpizi, M. & Sprik, M. Redox potentials and acidity constants from density functional theory based molecular dynamics. Acc. Chem. Res. 47, 3522–3529 (2014).

    Article  CAS  Google Scholar 

  36. Cheng, J., Liu, X., Kattirtzi, J. A., VandeVondele, J. & Sprik, M. Aligning electronic and protonic energy levels of proton-coupled electron transfer in water oxidation on aqueous TiO2. Angew. Chem. Int. Ed. 53, 12046–12050 (2014).

    Article  CAS  Google Scholar 

  37. Argyropoulos, S. D. et al. Quantitative 31P NMR detection of oxygen-centered and carbon-centered radical species. Bioorg. Med. Chem. 14, 4017–4028 (2006).

    Article  CAS  Google Scholar 

  38. Zoia, L. & Argyropoulos, D. S. Detection of ketyl radicals using 31P NMR spin trapping. J. Phys. Org. Chem. 23, 505–512 (2010).

    Article  CAS  Google Scholar 

  39. Müller, U., Rätzsch, M., Schwanninger, M., Steiner, M. & Zöbl, H. Yellowing and IR-changes of spruce wood as result of UV-irradiation. J. Photochem. Photobiol. B 69, 97–105 (2003).

    Article  Google Scholar 

  40. Fabbri, C., Bietti, M. & Lanzalunga, O. Generation and reactivity of ketyl radicals with lignin related structures. On the importance of the ketyl pathway in the photoyellowing of lignin containing pulps and papers. J. Org. Chem. 70, 2720–2728 (2005).

    Article  CAS  Google Scholar 

  41. Shuai, L. et al. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science 354, 329–333 (2016).

    Article  CAS  Google Scholar 

  42. Mansfield, S. D., Kim, H., Lu, F. & Ralph, J. Whole plant cell wall characterization using solution-state 2D NMR. Nat. Protoc. 7, 1579–1589 (2012).

    Article  CAS  Google Scholar 

  43. Wen, J., Sun, S., Xue, B. & Sun, C. Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials 6, 359–391 (2013).

    Article  CAS  Google Scholar 

  44. VandeVondele, J. et al. Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

    Article  CAS  Google Scholar 

  45. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  46. Krukau, A. V., Vydrov, O. A., Izmaylov, A. F. & Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 224106 (2006).

    Article  Google Scholar 

  47. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  48. Frisch, M. J. et al. Gaussian 09 Revision D.01. (Gaussian, 2009).

  49. Becke, A. D. Density-functional thermochemistry. 3. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  50. Cossi, M., Rega, N., Scalmani, G. & Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 24, 669–681 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21690082, 91545203 and 21503176).

Author information

Authors and Affiliations

Authors

Contributions

X.W. and X.F. performed most of the experiments and DFT computations, and analysed the data. S.X. performed some of the experiments and analysed the experimental data. J.L. performed characterizations for CdS QDs. J.C. guided the computational work, analysed all the data and co-wrote the paper. Q.Z. analysed all the data and co-wrote the paper. L.C. performed a part of characterizations and analysed the characterization results. Y.W. designed and guided the study and co-wrote the paper. All of the authors discussed the results and reviewed the manuscript.

Corresponding authors

Correspondence to Jun Cheng, Qinghong Zhang or Ye Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Methods; Supplementary Figures 1–10; Supplementary Tables 1–9; Supplementary References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Fan, X., Xie, S. et al. Solar energy-driven lignin-first approach to full utilization of lignocellulosic biomass under mild conditions. Nat Catal 1, 772–780 (2018). https://doi.org/10.1038/s41929-018-0148-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-018-0148-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing