Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mapping out the key carbon–carbon bond-forming steps in Mn-catalysed C–H functionalization

Abstract

Detailed understanding of the mechanistic processes that underpin transition metal-catalysed reactions allows for the rational and de novo development of complexes with enhanced activity, efficacy and wider substrate scope. Directly observing bond-cleaving and -forming events underpinning a catalytic reaction is non-trivial as the species that facilitate these steps are frequently short-lived and present at low concentrations. Here, we describe how the photochemical activation of a manganese precatalyst, [Mn(ppy)(CO)4] (ppy = 2-phenylpyridine), results in selective loss of a carbonyl ligand simulating entry into the catalytic cycle for manganese-promoted C–H bond functionalization. Time-resolved infrared spectroscopy (on the ps–ms timescale) allows direct observation of the species responsible for the essential C–C bond formation step and an evaluation of the factors affecting its rate. This mechanistic information prompted the discovery of a new photochemically initiated manganese-promoted coupling of phenylacetylene with 2-phenylpyridine. This study provides unique insight into the mechanistic pathways underpinning catalysis by an Earth-abundant metal, manganese.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Summary of manganese-catalysed C–H functionalization reactions.
Fig. 2: TRIR data for the reaction between 1 and PhC≡CH.
Fig. 3: TRIR data for the reaction between 1 and H2C=CHCO2nBu.
Fig. 4: TRIR data for the reaction between 1 and HexNCO.
Fig. 5: Analysis of experimental and DFT-calculated reaction kinetics.

Data availability

All data supporting this study are available on request from the University of York’s York Research Database: https://doi.org/10.15124/46f25600-736a-408a-b498-8b7f6a5f3f2e. X-ray crystallography data for structures 3 and 4 are available free of charge from the Cambridge Crystallographic Data Centre (https://www.ccdc.cam.ac.uk/) under reference numbers 1815767 and 1844072, respectively.

References

  1. Greetham, G. M. et al. Time-resolved multiple probe spectroscopy. Rev. Sci. Instrum. 83, 103107 (2012).

    Article  CAS  Google Scholar 

  2. Calladine, J. A. et al. Photoinduced N2 loss as a route to long-lived organometallic alkane complexes: a time-resolved IR and NMR study. Chem. Sci. 1, 622–630 (2010).

    Article  CAS  Google Scholar 

  3. Ford, P. C. From curiosity to applications. A personal perspective on inorganic photochemistry. Chem. Sci. 7, 2964–2986 (2016).

    Article  CAS  Google Scholar 

  4. Jackson, S. A., Hodges, P. M., Poliakoff, M., Turner, J. J. & Grevels, F. W. Infrared spectroscopic studies on the photocatalytic hydrogenation of norbornadiene by group 6 metal carbonyls. 1. The role of H2 and the characterization of nonclassical dihydrogen complexes, (η4-norbornadiene)M(CO)32-H2). J. Am. Chem. Soc. 112, 1221–1233 (1990).

    Article  CAS  Google Scholar 

  5. Hodges, P. M. et al. Infrared spectroscopic studies on the photocatalytic hydrogenation of norbornadiene by group 6 metal carbonyls. 2. The role of the diene and the characterization of (η4-norbornadiene)(η2-norbornadiene)M(CO)3 complexes. J. Am. Chem. Soc. 112, 1234–1244 (1990).

    Article  CAS  Google Scholar 

  6. Guan, J. et al. Probing the carbon–hydrogen activation of alkanes following photolysis of Tp′Rh(CNR)(carbodiimide): a computational and time-resolved infrared spectroscopic study. J. Am. Chem. Soc. 140, 1842–1854 (2018).

    Article  CAS  Google Scholar 

  7. Wencel-Delord, J. & Glorius, F. C–H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat. Chem. 5, 369–375 (2013).

    Article  CAS  Google Scholar 

  8. Arockiam, P. B., Bruneau, C. & Dixneuf, P. H. Ruthenium(ii)-catalyzed C–H bond activation and functionalization. Chem. Rev. 112, 5879–5918 (2012).

    Article  CAS  Google Scholar 

  9. Song, G., Wang, F. & Li, X. C–C, C–O and C–N bond formation via rhodium(iii)-catalyzed oxidative C–H activation. Chem. Soc. Rev. 41, 3651–3678 (2012).

    Article  CAS  Google Scholar 

  10. Colby, D. A., Bergman, R. G. & Ellman, J. A. Rhodium-catalyzed C−C bond formation via heteroatom-directed C−H bond activation. Chem. Rev. 110, 624–655 (2010).

    Article  CAS  Google Scholar 

  11. Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C−H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010).

    Article  CAS  Google Scholar 

  12. Pototschnig, G., Maulide, N. & Schnürch, M. Direct functionalization of C−H bonds by iron, nickel, and cobalt catalysis. Chem. Eur. J. 23, 9206–9232 (2017).

    Article  CAS  Google Scholar 

  13. Su, B., Cao, Z.-C. & Shi, Z.-J. Exploration of Earth-abundant transition metals (Fe, Co, and Ni) as catalysts in unreactive chemical bond activations. Acc. Chem. Res. 48, 886–896 (2015).

    Article  CAS  Google Scholar 

  14. Moselage, M., Li, J. & Ackermann, L. Cobalt-catalyzed C–H activation. ACS Catal. 6, 498–525 (2016).

    Article  CAS  Google Scholar 

  15. Shang, R., Ilies, L. & Nakamura, E. Iron-catalyzed C–H bond activation. Chem. Rev. 117, 9086–9139 (2017).

    Article  CAS  Google Scholar 

  16. Zhou, B., Chen, H. & Wang, C. Mn-catalyzed aromatic C–H alkenylation with terminal alkynes. J. Am. Chem. Soc. 135, 1264–1267 (2013).

    Article  CAS  Google Scholar 

  17. He, R., Huang, Z.-T., Zheng, Q.-Y. & Wang, C. Manganese-catalyzed dehydrogenative [4+2] annulation of N–H imines and alkynes by C–H/N–H activation. Angew. Chem. Int. Ed. 53, 4950–4953 (2014).

    Article  CAS  Google Scholar 

  18. Shi, L., Zhong, X., She, H., Lei, Z. & Li, F. Manganese catalyzed C–H functionalization of indoles with alkynes to synthesize bis/trisubstituted indolylalkenes and carbazoles: the acid is the key to control selectivity. Chem. Commun. 51, 7136–7139 (2015).

    Article  CAS  Google Scholar 

  19. Lu, Q. Q. et al. Redox-neutral manganese(i)-catalyzed C–H activation: traceless directing group enabled regioselective annulation. Angew. Chem. Int. Ed. 56, 12778–12782 (2017).

    Article  CAS  Google Scholar 

  20. Lu, Q. Q., Gressies, S., Klauck, F. J. R. & Glorius, F. Manganese(i)-catalyzed regioselective C–H allenylation: direct access to 2-allenylindoles. Angew. Chem. Int. Ed. 56, 6660–6664 (2017).

    Article  CAS  Google Scholar 

  21. Ruan, Z. X., Sauermann, N., Manoni, E. & Ackermann, L. Manganese-catalyzed C–H alkynylation: expedient peptide synthesis and modification. Angew. Chem. Int. Ed. 56, 3172–3176 (2017).

    Article  CAS  Google Scholar 

  22. Wang, H., Pesciaioli, F., Oliveira, J. C. A., Warratz, S. & Ackermann, L. Synergistic manganese(i) C–H activation catalysis in continuous flow: chemoselective hydroarylation. Angew. Chem. Int. Ed. 56, 15063–15067 (2017).

    Article  CAS  Google Scholar 

  23. Lu, Q. et al. Manganese(i)-catalyzed C–H (2-indolyl)methylation: expedient access to diheteroarylmethanes. Angew. Chem. Int. Ed. 57, 1399–1403 (2018).

    Article  CAS  Google Scholar 

  24. Zhou, B., Ma, P., Chen, H. & Wang, C. Amine-accelerated manganese-catalyzed aromatic C–H conjugate addition to α,β-unsaturated carbonyls. Chem. Commun. 50, 14558–14561 (2014).

    Article  CAS  Google Scholar 

  25. Liu, W., Zell, D., John, M. & Ackermann, L. Manganese-catalyzed synthesis of cis-β-amino acid esters through organometallic C–H activation of ketimines. Angew. Chem. Int. Ed. 54, 4092–4096 (2015).

    Article  CAS  Google Scholar 

  26. Cai, S. H. et al. Manganese-catalyzed synthesis of monofluoroalkenes via C–H activation and C–F cleavage. Chem. Commun. 53, 8731–8734 (2017).

    Article  CAS  Google Scholar 

  27. Liang, Y. F. et al. Methylenecyclopropane annulation by manganese(i)-catalyzed stereoselective C–H/C–C activation. Angew. Chem. Int. Ed. 56, 9415–9419 (2017).

    Article  CAS  Google Scholar 

  28. Liu, S. L. et al. An approach to 3-(indo1-2-yl)succinimide derivatives by manganese catalyzed C–H activation. Org. Lett. 19, 4042–4045 (2017).

    Article  CAS  Google Scholar 

  29. Meyer, T. H. et al. Manganese(i)-catalyzed dispersion-enabled C–H/C–C activation. Chem. Eur. J. 23, 5443–5447 (2017).

    Article  CAS  Google Scholar 

  30. Ni, J. B., Zhao, H. C. & Zhang, A. Manganese(i)-catalyzed C–H 3,3-difluoroallylation of pyridones and indoles. Org. Lett. 19, 3159–3162 (2017).

    Article  CAS  Google Scholar 

  31. Wang, H., Lorion, M. M. & Ackermann, L. Air-stable manganese(i)-catalyzed C–H activation for decarboxylative C–H/C–O cleavages in water. Angew. Chem. Int. Ed. 56, 6339–6342 (2017).

    Article  CAS  Google Scholar 

  32. Zell, D. et al. C–F/C–H functionalization by manganese(i) catalysis: expedient (per)fluoro-allylations and alkenylations. ACS Catal. 7, 4209–4213 (2017).

    Article  CAS  Google Scholar 

  33. Liu, W., Richter, S. C., Zhang, Y. & Ackermann, L. Manganese(i)-catalyzed substitutive C–H allylation. Angew. Chem. Int. Ed. 55, 7747–7750 (2016).

    Article  CAS  Google Scholar 

  34. Lu, Q., Klauck, F. J. R. & Glorius, F. Manganese-catalyzed allylation via sequential C–H and C–C/C–Het bond activation. Chem. Sci. 8, 3379–3383 (2017).

    Article  CAS  Google Scholar 

  35. Chen, S. Y. et al. Manganese(i)-catalyzed regio- and stereoselective 1,2-diheteroarylation of allenes: combination of C–H activation and smiles rearrangement. Angew. Chem. Int. Ed. 56, 9939–9943 (2017).

    Article  CAS  Google Scholar 

  36. Chen, S. Y., Li, Q. J. & Wang, H. G. Manganese(i)-catalyzed direct C–H allylation of arenes with allenes. J. Org. Chem. 82, 11173–11181 (2017).

    Article  CAS  Google Scholar 

  37. Wang, C. M., Wang, A. & Rueping, M. Manganese-catalyzed C–H functionalizations: hydroarylations and alkenylations involving an unexpected heteroaryl shift. Angew. Chem. Int. Ed. 56, 9935–9938 (2017).

    Article  CAS  Google Scholar 

  38. Zhu, C., Schwarz, J. L., Cembellin, S., Gressies, S. & Glorius, F. Highly selective manganese(i)/Lewis acid cocatalyzed direct C–H propargylation using bromoallenes. Angew. Chem. Int. Ed. 57, 437–441 (2018).

    Article  CAS  Google Scholar 

  39. Liu, W., Bang, J., Zhang, Y. & Ackermann, L. Manganese(i)-catalyzed C–H aminocarbonylation of heteroarenes. Angew. Chem. Int. Ed. 54, 14137–14140 (2015).

    Article  CAS  Google Scholar 

  40. Zhou, B. W., Hu, Y. Y., Liu, T. & Wang, C. Y. Aromatic C–H addition of ketones to imines enabled by manganese catalysis. Nat. Commun. 8, 1169 (2017).

    Article  Google Scholar 

  41. Kuninobu, Y., Nishina, Y., Takeuchi, T. & Takai, K. Manganese-catalyzed insertion of aldehydes into a C–H bond. Angew. Chem. Int. Ed. 46, 6518–6520 (2007).

    Article  CAS  Google Scholar 

  42. Liang, Y.-F., Massignan, L., Liu, W. & Ackermann, L. Catalyst-guided C=Het hydroarylations by manganese-catalyzed additive-free C−H activation. Chem. Eur. J. 22, 14856–14859 (2016).

    Article  CAS  Google Scholar 

  43. Zhou, B., Hu, Y. & Wang, C. Manganese‐catalyzed direct nucleophilic C(sp2)–H addition to aldehydes and nitriles. Angew. Chem. Int. Ed. 54, 13659–13663 (2015).

    Article  CAS  Google Scholar 

  44. Liu, W. & Ackermann, L. Manganese-catalyzed C–H activation. ACS Catal. 6, 3743–3752 (2016).

    Article  CAS  Google Scholar 

  45. Wang, C. Y. Manganese-mediated C–C bond formation via C–H activation: from stoichiometry to catalysis. Synlett 24, 1606–1613 (2013).

    Article  CAS  Google Scholar 

  46. Hu, Y., Zhou, B. & Wang, C. Inert C–H bond transformations enabled by organometallic manganese catalysis. Acc. Chem. Res. 51, 816–827 (2018).

    Article  CAS  Google Scholar 

  47. Yahaya, N. P. et al. Manganese(i)-catalyzed C−H activation: the key role of a 7-membered manganacycle in H-transfer and reductive elimination. Angew. Chem. Int. Ed. 55, 12455–12459 (2016).

    Article  CAS  Google Scholar 

  48. Farrell, I. R. et al. Direct observation of competitive ultrafast CO dissociation and relaxation of an MLCT excited state: picosecond time-resolved infrared spectroscopic study of [Cr(CO)4(2,2′-bipyridine)]. Inorg. Chem. 41, 4318–4323 (2002).

    Article  CAS  Google Scholar 

  49. Shanoski, J. E., Payne, C. K., Kling, M. F., Glascoe, E. A. & Harris, C. B. Ultrafast infrared mechanistic studies of the interaction of 1-hexyne with group 6 hexacarbonyl complexes. Organometallics 24, 1852–1859 (2005).

    Article  CAS  Google Scholar 

  50. Moulton, B. E. et al. A rationale for the linear correlation of aryl substituent effects in iron(0) tricarbonyl complexes containing α,β-unsaturated enone (chalcone) ligands. Organometallics 26, 6354–6365 (2007).

    Article  CAS  Google Scholar 

  51. Shanoski, J. E., Glascoe, E. A. & Harris, C. B. Ligand rearrangement reactions of Cr(CO)6 in alcohol solutions: experiment and theory. J. Phys. Chem. B 110, 996–1005 (2006).

    Article  CAS  Google Scholar 

  52. Neville, A. G., Brown, C. E., Rayner, D. M., Lusztyk, J. & Ingold, K. U. First direct detection of transient organic free radicals in solution by time-resolved infrared spectroscopy. Kinetic studies on some acyl radicals. J. Am. Chem. Soc. 113, 1869–1870 (1991).

    Article  CAS  Google Scholar 

  53. Bruce, M. I., Goodall, B. L. & Matsuda, I. Cyclometallation reactions. XIII. Reactions of phenyl-substituted heterocyclic nitrogen-donor ligands. Aust. J. Chem. 28, 1259–1264 (1975).

    Article  CAS  Google Scholar 

  54. Greetham, G. M. et al. ULTRA: a unique instrument for time-resolved spectroscopy. Appl. Spectrosc. 64, 1311–1319 (2010).

    Article  CAS  Google Scholar 

  55. Császár, P. & Pulay, P. Geometry optimization by direct inversion in the iterative subspace. J. Mol. Struct. 114, 31–34 (1984).

    Article  Google Scholar 

  56. Ahlrichs, R., Bär, M., Häser, M., Horn, H. & Kölmel, C. Electronic structure calculations on workstation computers: the program system TURBOMOLE. Chem. Phys. Lett. 162, 165–169 (1989).

    Article  CAS  Google Scholar 

  57. Deglmann, P., Furche, F. & Ahlrichs, R. An efficient implementation of second analytical derivatives for density functional methods. Chem. Phys. Lett. 362, 511–518 (2002).

    Article  CAS  Google Scholar 

  58. Deglmann, P., May, K., Furche, F. & Ahlrichs, R. Nuclear second analytical derivative calculations using auxiliary basis set expansions. Chem. Phys. Lett. 384, 103–107 (2004).

    Article  CAS  Google Scholar 

  59. Eichkorn, K., Treutler, O., Öhm, H., Häser, M. & Ahlrichs, R. Auxiliary basis sets to approximate Coulomb potentials. Chem. Phys. Lett. 240, 283–290 (1995).

    Article  CAS  Google Scholar 

  60. Eichkorn, K., Weigend, F., Treutler, O. & Ahlrichs, R. Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theor. Chem. Acc. 97, 119–124 (1997).

    Article  CAS  Google Scholar 

  61. Treutler, O. & Ahlrichs, R. Efficient molecular numerical integration schemes. J. Chem. Phys. 102, 346–354 (1995).

    Article  CAS  Google Scholar 

  62. von Arnim, M. & Ahlrichs, R. Geometry optimization in generalized natural internal coordinates. J. Chem. Phys. 111, 9183–9190 (1999).

    Article  CAS  Google Scholar 

  63. Klamt, A. & Schuurmann, G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perk. Trans. 2 1993, 799–805 (1993).

    Article  Google Scholar 

  64. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  65. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Syngenta and the Engineering and Physical Sciences Research Council (CASE studentship to L.A.H. (EP/N509413/) and, for the computational equipment used in this study, EP/H011455/, and Engineering and Physical Sciences Research Council ‘ENERGY’ grant EP/K031589/1) for funding, as well as the Science and Technology Facilities Council for access to the ULTRA facilities at the Rutherford Appleton Laboratory. We thank A. Whitwood and R. Bean for the X-ray structure of compounds 3 and 4, D. Turnbull for a crystalline sample of 4, and R. Perutz for insightful comments on this work.

Author information

Authors and Affiliations

Authors

Contributions

J.M.L. and I.J.S.F. conceived the experimental programme with input on project direction from A.R. The TRIR experiments were performed by L.A.H., J.M.L., I.J.S.F., I.P.C. and I.V.S. on instrumentation set-up and built by M.T. Compounds 1 and 2 were prepared by L.A.H. F.C. prepared compound 3. S.M. prepared compound 4. J.M.L. performed and analysed the DFT calculations. TRIR data were analysed by J.M.L., L.A.H., I.J.S.F., I.P.C. and M.T. J.M.L. wrote the paper with input from all authors.

Corresponding authors

Correspondence to Ian J. S. Fairlamb or Jason M. Lynam.

Ethics declarations

Competing interests

The authors declare no competing interests

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–40, Supplementary Table 1, Supplementary References

Supplementary Data 1

DFT coordinates

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hammarback, L.A., Clark, I.P., Sazanovich, I.V. et al. Mapping out the key carbon–carbon bond-forming steps in Mn-catalysed C–H functionalization. Nat Catal 1, 830–840 (2018). https://doi.org/10.1038/s41929-018-0145-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-018-0145-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing