Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Integrated tuneable synthesis of liquid fuels via Fischer–Tropsch technology

Abstract

To tune the product selectivity by controlling the complicated reaction path is a big challenge in Fischer–Tropsch synthesis. Here, we report an integrated catalytic process for the direct conversion of syngas (CO/H2) into different types of liquid fuels without subsequent hydrorefining post-treatments of Fischer–Tropsch waxes. Outstanding selectivities for gasoline, jet fuel and diesel fuel as high as 74, 72 and 58% are achieved, respectively, by only using mesoporous Y-type zeolites in combination with cobalt nanoparticles. The types of liquid fuels can be readily tuned by controlling the porosity and acid properties of the zeolites. We further build a new product-distribution model for the bifunctional catalysts, which do not obey the traditional Anderson–Schulz–Flory (ASF) distribution. The present work offers a simple and effective method for the direct synthesis of different types of liquid fuels.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic for the conversion of natural gas, biomass and coal into liquid fuels.
Fig. 2: Catalytic performance.
Fig. 3: Characterization of the porous and acidic properties of Ymeso zeolites.
Fig. 4: Deviation of ideal ASF distribution and bifunctional catalyst distribution model.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Khodakov, A. Y., Chu, W. & Fongarland, P. Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem. Rev. 107, 1692–1744 (2007).

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Huber, G. W., Iborra, S. & Corma, A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 106, 4044–4098 (2006).

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Higman, C. & Tam., S. Advances in coal gasification, hydrogenation, and gas treating for the production of chemicals and fuels. Chem. Rev. 114, 1673–1708 (2014).

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Navarro, V., Van Spronsen, M. A. & Frenken, J. W. M. In situ observation of self-assembled hydrocarbon Fischer–Tropsch products on a cobalt catalyst. Nat. Chem. 8, 929–934 (2016).

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Gao, P. et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nat. Chem. 9, 1019–1024 (2017).

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Dry, M. E. The Fischer–Tropsch process: 1950–2000. Catal. Today 71, 227–241 (2002).

    CAS  Article  Google Scholar 

  7. 7.

    de Klerk, A. Fischer–Tropsch Refining (Wiley, Weinheim, 2011).

  8. 8.

    Maitlis, P. M. & de Klerk, A. Greener FischerTropsch Processes for Fuels and Feedstocks (Wiley, Weinheim, 2013).

  9. 9.

    Flory, P. J. et al. Molecular size distribution in linear condensation polymers. J. Am. Chem. Soc. 58, 1877–1885 (1936).

    CAS  Article  Google Scholar 

  10. 10.

    Friedel, R. A. & Anderson, R. B. Composition of synthetic liquid fuels. I. Product distribution and analysis of C5–C8 paraffin isomers from cobalt catalyst. J. Am. Chem. Soc. 72, 1212–1215 (1950).

    CAS  Article  Google Scholar 

  11. 11.

    Sartipi, S. et al. Hierarchical H-ZSM-5-supported cobalt for the direct synthesis of gasoline-range hydrocarbons from syngas: advantages, limitations, and mechanistic insight. J. Catal. 305, 179–190 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    Sartipi, S., Makkee, M., Kapteijn, F. & Gascon, J. Catalysis engineering of bifunctional solids for the one-step synthesis of liquid fuels from syngas: a review. Catal. Sci. Technol. 4, 893–907 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Kang, J. et al. Mesoporous zeolite-supported ruthenium nanoparticles as highly selective Fischer–Tropsch catalysts for the production of C5–C11 isoparaffins. Angew. Chem. Int. Ed. 50, 5200–5203 (2011).

    CAS  Article  Google Scholar 

  14. 14.

    Bao, J., He, J., Zhang, Y., Yoneyama, Y. & Tsubaki, N. A core/shell catalyst produces a spatially confined effect and shape selectivity in a consecutive reaction. Angew. Chem. Int. Ed. 47, 353–356 (2008).

    CAS  Article  Google Scholar 

  15. 15.

    Yamane, N. et al. Building premium secondary reaction field with a miniaturized capsule catalyst to realize efficient synthesis of a liquid fuel directly from syngas. Catal. Sci. Technol. 7, 1996–2000 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    Kang, J. et al. Ruthenium nanoparticles supported on carbon nanotubes as efficient catalysts for selective conversion of synthesis gas to diesel fuel. Angew. Chem. Int. Ed. 48, 2565–2568 (2009).

    CAS  Article  Google Scholar 

  17. 17.

    Peng, X. et al. Impact of hydrogenolysis on Fischer–Tropsch synthesis selectivity: diesel fuel production over mesoporous zeolite Y-supported cobalt nanoparticles. Angew. Chem. Int. Ed. 54, 4553–4556 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    Sartipi, S. et al. Insights into the catalytic performance of mesoporous H-ZSM-5-supported cobalt in Fischer–Tropsch synthesis. ChemCatChem 6, 142–151 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    Sartipi, S. et al. Towards liquid fuels from biosyngas: effect of zeolite structure in hierarchical-zeolite-supported cobalt catalysts. ChemSusChem 6, 1646–1650 (2013).

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Zhang, Q., Kang, J. & Wang, Y. Development of novel catalysts for Fischer–Tropsch synthesis: tuning the product selectivity. ChemCatChem 2, 1030–1058 (2010).

    CAS  Article  Google Scholar 

  21. 21.

    Cheng, K. et al. Mesoporous beta zeolite-supported ruthenium nanoparticles for selective conversion of synthesis gas to C5–C11 isoparaffins. ACS Catal. 2, 441–449 (2012).

    CAS  Article  Google Scholar 

  22. 22.

    de Jong, K. P. et al. Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts. Angew. Chem. Int. Ed. 49, 10074–10078 (2010).

    CAS  Article  Google Scholar 

  23. 23.

    Vervloet, D. et al. Fischer–Tropsch reaction–diffusion in a cobalt catalyst particle: aspects of activity and selectivity for a variable chain growth probability. Catal. Sci. Technol. 2, 1221–1233 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    Weitkamp, J. Catalytic hydrocracking—mechanisms and versatility of the process. ChemCatChem 4, 292–306 (2012).

    CAS  Article  Google Scholar 

  25. 25.

    Scherzer, J. & Gruia, A. J. Hydrocracking Science and Technology (Marcel Dekker, New York, 1996).

  26. 26.

    de Klerk, A. Environmentally friendly refining: Fischer–Tropsch versus crude oil. Green Chem. 9, 560–565 (2007).

    CAS  Article  Google Scholar 

  27. 27.

    Leckel, D. Diesel production from Fischer–Tropsch: the past, the present, and new concepts. Energy Fuels 23, 2342–2358 (2009).

    CAS  Article  Google Scholar 

  28. 28.

    Wu, T. et al. Physical and chemical properties of GTL–diesel fuel blends and their effects on performance and emissions of a multicylinder DI compression ignition engine. Energy Fuels 21, 1908–1914 (2007).

    Article  CAS  Google Scholar 

  29. 29.

    Abu-Jrai, A. et al. Effect of gas-to-liquid diesel fuels on combustion characteristics, engine emissions, and exhaust gas fuel reforming. Comparative study. Energy Fuels 20, 2377–2384 (2006).

    CAS  Article  Google Scholar 

  30. 30.

    Maxwell, I. E. Zeolite catalysis in hydroprocessing technology. Catal. Today 1, 385–413 (1987).

    CAS  Article  Google Scholar 

  31. 31.

    Bouchy, C. et al. Fischer–Tropsch waxes upgrading via hydrocracking and selective hydroisomerization. Oil Gas Sci. Technol. 64, 91–112 (2009).

    CAS  Article  Google Scholar 

  32. 32.

    Calemma, V. et al. Middle distillates from hydrocracking of FT waxes: composition, characteristics and emission properties. Catal. Today 149, 40–46 (2010).

    CAS  Article  Google Scholar 

  33. 33.

    Katada, N., Igi, H., Kim, J. H. & Niwa., M. Determination of the acidic properties of zeolite by theoretical analysis of temperature-programmed desorption of ammonia based on adsorption equilibrium. J. Phys. Chem. B 101, 5969–5977 (1997).

    CAS  Article  Google Scholar 

  34. 34.

    Woolery, G. L. et al. On the nature of framework Brønsted and Lewis acid sites in ZSM-5. Zeolites 19, 288–296 (1997).

    CAS  Article  Google Scholar 

  35. 35.

    Garralón, G., Cormat, A. & Formés, V. Evidence for the presence of superacid nonframework hydroxyl groups in dealuminated HY zeolites. Zeolites 9, 84–86 (1989).

    Article  Google Scholar 

  36. 36.

    Cerqueira, H. S., Caeiro, G., Costa, L. & Ramôa Ribeiro, F. Deactivation of FCC catalysts. J. Mol. Catal. A 292, 1–13 (2008).

    CAS  Article  Google Scholar 

  37. 37.

    Sousa-Aguiara, E. F., Trigueiro, F. E. & Zotin, F. M. Z. The role of rare earth elements in zeolites and cracking catalysts. Catal. Today 218, 115–122 (2013).

    Article  CAS  Google Scholar 

  38. 38.

    Duan, L. et al. Adsorption, co-adsorption, and reactions of sulfur compounds, aromatics, olefins over Ce-exchanged Y zeolite. J. Phys. Chem. C 116, 25748–25756 (2012).

    CAS  Article  Google Scholar 

  39. 39.

    Xue, M. et al. Preparation of cerium-loaded Y-zeolites for removal of organic sulfur compounds from hydrodesulfurizated gasoline and diesel oil. J. Colloid Interface Sci. 298, 535–542 (2006).

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Borg, Ø.et al. Effect of biomass-derived synthesis gas impurity elements on cobalt Fischer–Tropsch catalyst performance including in situ sulphur and nitrogen addition. J. Catal. 279, 163–173 (2011)..

    CAS  Article  Google Scholar 

  41. 41.

    Lillebø, A. H. et al. The effect of alkali and alkaline earth elements on cobalt based Fischer–Tropsch catalysts. Catal. Today 215, 60–66 (2013).

    Article  CAS  Google Scholar 

  42. 42.

    Buttefey, S. et al. A simple model for predicting the Na+ distribution in anhydrous NaY and NaX zeolites. J. Phys. Chem. B 105, 9569–9575 (2001).

    CAS  Article  Google Scholar 

  43. 43.

    Sexton, B. A. et al. An XPS and TPR study of the reduction of promoted cobalt-kieselguhr Fischer–Tropsch catalysts. J. Catal. 97, 390–406 (1986).

    CAS  Article  Google Scholar 

  44. 44.

    Ernst, B. et al. Study on a cobalt silica catalyst during reduction and Fischer–Tropsch reaction: in situ EXAFS compared to XPS and XRD. Catal. Today 39, 329–341 (1998).

    CAS  Article  Google Scholar 

  45. 45.

    Moodley, D. J. et al. Carbon deposition as a deactivation mechanism of cobalt-based Fischer–Tropsch synthesis catalysts under realistic conditions. Appl. Catal. A 354, 102–110 (2009).

    CAS  Article  Google Scholar 

  46. 46.

    Ferrari, A. C. & Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000).

    CAS  Article  Google Scholar 

  47. 47.

    Pimenta, M. A. et al. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 9, 1276–1291 (2007).

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Galvis, H. M. T. et al. Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science 335, 835–838 (2012).

    Article  CAS  Google Scholar 

  49. 49.

    Verboekend, D., Vilé, G. & Ramírez, J. P. Hierarchical Y and USY zeolites designed by post-synthetic strategies. Adv. Funct. Mater. 22, 916–928 (2012).

    CAS  Article  Google Scholar 

  50. 50.

    Eggenhuisen, T. M. et al. Fundamentals of melt infiltration for the preparation of supported metal catalysts. The case of Co/SiO2 for Fischer–Tropsch synthesis. J. Am. Chem. Soc. 132, 18318–18325 (2010).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the New Energy and Industrial Technology Development Organization of Japan, Japan Science and Technology Agency (MIRAI-JPMJMI17E2) and Natural Science Foundation of China (21433008, 91545203 and 21528302). We acknowledge J. Kang (Xiamen University, China), M. Tan (Institute of Coal Chemistry, Chinese Academy of Sciences, China), and A. Hashimoto, T. Hara and Y. Hara (National Institute for Materials Science, Japan) for performing supplementary reaction tests and characterization in the later stages of this work.

Author information

Affiliations

Authors

Contributions

J.L., Y.H., L.T. and P.Z. performed most of the experiments and analysed the experimental data. A.O. performed the TEM characterization. X.P., Y.W. and N.T. designed the study, analysed the data and wrote the manuscript. H.A. and G.Y. contributed to the experimental design. N.T. supervised the whole project. All authors discussed the results and commented on the manuscript at all stages.

Corresponding authors

Correspondence to Xiaobo Peng or Ye Wang or Noritatsu Tsubaki.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–13; Supplementary Figures 1–17; Supplementary Note; Supplementary Equations; Supplementary References

Supplementary Data Set 1

Matrix for the Gasoline distribution model

Supplementary Data Set 2

Matrix for the Jet fuel distribution model

Supplementary Data Set 3

Matrix for the Diesel distribution model

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, J., He, Y., Tan, L. et al. Integrated tuneable synthesis of liquid fuels via Fischer–Tropsch technology. Nat Catal 1, 787–793 (2018). https://doi.org/10.1038/s41929-018-0144-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing