Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tandem copper hydride–Lewis pair catalysed reduction of carbon dioxide into formate with dihydrogen

Abstract

The reduction of CO2 into formic acid or its conjugate base, using dihydrogen, is an attractive process. While catalysts based on noble metals have shown high turnover numbers, the use of abundant first-row metals is underdeveloped. The key steps of the reaction are CO2 insertion into a metal hydride and regeneration of the metal hydride with H2, along with the concomitant production of formate. For the first step, copper is known as one of the most efficient metals, as shown by the numerous copper-catalysed carboxylation reactions, but this metal has difficulties activating H2 to achieve the second step. Here, we report a catalytic system involving a stable copper hydride that activates CO2, working in tandem with a Lewis pair that heterolytically splits H2. In this system, unprecedented turnover numbers for copper are obtained. Surprisingly, through a combination of stoichiometric and catalytic reactions, we show that classical Lewis pairs outperform frustrated Lewis pairs in this process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Limitations to the copper- and FLP-catalysed reduction of CO2 with H2.
Fig. 2: Stoichiometric reactions supporting our working hypothesis.
Fig. 3: Stoichiometric reactivity of the DBU/BCF Lewis pair with H2 and CO2.
Fig. 4: Stoichiometric reactions supporting the proposed catalytic cycle.

Similar content being viewed by others

Data availability

CCDC 1839096 (B1), 1839093 (\({\mathbf{C}}_{\mathbf{1}}^{{\rm{C}}_{6}{\rm{F}}_{5}}\)), 1839094 (C3H) and 1839095 (3) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre. All other data are available from the authors upon reasonable request.

References

  1. Wang, W., Himeda, Y., Muckerman, J. T., Manbeck, G. F. & Fujita, E. CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem. Rev. 115, 12936–12973 (2015).

    Article  CAS  Google Scholar 

  2. Alvarez, A. et al. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chem. Rev. 117, 9804–9838 (2017).

    Article  CAS  Google Scholar 

  3. Sordakis, K. et al. Homogeneous catalysis for sustainable hydrogen storage in formic acid and alcohols. Chem. Rev. 118, 372–433 (2018).

    Article  CAS  Google Scholar 

  4. Bontemps, S. Boron-mediated activation of carbon dioxide. Coord. Chem. Rev. 308, 117–130 (2016).

    Article  CAS  Google Scholar 

  5. Fernandez-Alvarez, F. J., Aitani, A. M. & Oro, L. A. Homogeneous catalytic reduction of CO2 with hydrosilanes. Catal. Sci. Technol. 4, 611–624 (2014).

    Article  CAS  Google Scholar 

  6. Inoue, Y., Izumida, H. & Hashimoto, H. Catalytic fixation of carbon dioxide to formic acid by transition metal complexes under mild conditions. Chem. Lett. 5, 863–864 (1976).

    Article  Google Scholar 

  7. Dong, K., Razzaq, R., Hu, Y. & Ding, K. Homogeneous reduction of carbon dioxide with hydrogen. Top. Curr. Chem. 375, 1–26 (2017).

    Article  CAS  Google Scholar 

  8. Tanaka, R., Yamashita, M. & Nozaki, K. Catalytic hydrogenation of carbon dioxide using Ir(iii)–pincer complexes. J. Am. Chem. Soc. 131, 14168–14169 (2009).

    Article  CAS  Google Scholar 

  9. Bertini, F. et al. Carbon dioxide hydrogenation catalysed by well-defined Mn(i) PNP pincer hydride complexes. Chem. Sci. 8, 5024–5029 (2017).

    Article  CAS  Google Scholar 

  10. Langer, R. et al. Low-pressure hydrogenation of carbon dioxide catalyzed by an iron pincer complex exhibiting noble metal activity. Angew. Chem. Int. Ed. 50, 9948–9952 (2011).

    Article  CAS  Google Scholar 

  11. Zhang, Y. et al. Iron catalyzed CO2 hydrogenation to formate enhanced by Lewis acid co-catalysts. Chem. Sci. 6, 4291–4299 (2015).

    Article  CAS  Google Scholar 

  12. Jeletic, M. S., Mock, M. T., Appel, A. M. & Linehan, J. C. A cobalt-based catalyst for the hydrogenation of CO2 under ambient conditions. J. Am. Chem. Soc. 135, 11533–11536 (2013).

    Article  CAS  Google Scholar 

  13. Vogt, C. et al. Unraveling structure sensitivity in CO2 hydrogenation over nickel. Nat. Catal. 1, 127–134 (2018).

    Article  Google Scholar 

  14. Watari, R., Kayaki, Y., Hirano, S.-I., Matsumoto, N. & Ikariya, T. Hydrogenation of carbon dioxide to formate catalyzed by a copper/1,8-diazabicyclo[5.4.0]undec-7-ene system. Adv. Synth. Catal. 357, 1369–1373 (2015).

    Article  CAS  Google Scholar 

  15. Zall, C. M., Linehan, J. C. & Appel, A. M. A molecular copper catalyst for hydrogenation of CO2 to formate. ACS Catal. 5, 5301–5305 (2015).

    Article  CAS  Google Scholar 

  16. Zall, C. M., Linehan, J. C. & Appel, A. M. Triphosphine-ligated copper hydrides for CO2 hydrogenation: structure, reactivity, and thermodynamic studies. J. Am. Chem. Soc. 138, 9968–9977 (2016).

    Article  CAS  Google Scholar 

  17. Wang, S., Du, G. & Xi, C. Copper-catalyzed carboxylation reactions using carbon dioxide. Org. Biomol. Chem. 14, 3666–3676 (2016).

    Article  CAS  Google Scholar 

  18. Liu, Q., Wu, L., Jackstell, R. & Beller, M. Using carbon dioxide as a building block in organic synthesis. Nat. Comm. 6, 5933 (2015).

    Article  Google Scholar 

  19. Welch, G. C., Juan, R. R. S., Masuda, J. D. & Stephan, D. W. Reversible metal-free activation. Science 314, 1124–1126 (2006).

    Article  CAS  Google Scholar 

  20. Stephan, D. W. The broadening reach of frustrated Lewis pair chemistry. Science 354, aaf7229 (2016).

    Article  Google Scholar 

  21. Stephan, D. W. & Erker, G. Frustrated Lewis pairs: metal-free hydrogen activation and more. Angew. Chem. Int. Ed. 49, 46–76 (2010).

    Article  CAS  Google Scholar 

  22. Courtemanche, M. A. et al. Intramolecular B/N frustrated Lewis pairs and the hydrogenation of carbon dioxide. Chem. Commun. 51, 9797–9800 (2015).

    Article  CAS  Google Scholar 

  23. Ashley, A. E., Thompson, A. L. & O’Hare, D. Non-metal-mediated homogeneous hydrogenation of CO2 to methanol. Angew. Chem. Int. Ed. 48, 9839–9843 (2009).

    Article  CAS  Google Scholar 

  24. Voss, T. et al. Frustrated Lewis pair behavior of intermolecular amine/B(C6F5)3 pairs. Organometallics 31, 2367–2378 (2012).

    Article  CAS  Google Scholar 

  25. Liu, L., Vankova, N. & Heine, T. A kinetic study on the reduction of CO2 by frustrated Lewis pairs: from understanding to rational design. Phys. Chem. Chem. Phys. 18, 3567–3574 (2016).

    Article  CAS  Google Scholar 

  26. Melaimi, M., Jazzar, R., Soleilhavoup, M. & Bertrand, G. Cyclic (alkyl)(amino)carbenes (CAACs): recent developments. Angew. Chem. Int. Ed. 56, 10046–10068 (2017).

    Article  CAS  Google Scholar 

  27. Wyss, C. M., Tate, B. K., Bacsa, J., Gray, T. G. & Sadighi, J. P. Bonding and reactivity of a μ-hydrido dicopper cation. Angew. Chem. Int. Ed. 52, 12920–12923 (2013).

    Article  CAS  Google Scholar 

  28. Jordan, A. J., Lalic, G. & Sadighi, J. P. Coinage metal hydrides: synthesis, characterization, and reactivity. Chem. Rev. 116, 8318–8372 (2016).

    Article  CAS  Google Scholar 

  29. Jordan, A. J., Wyss, C. M., Bacsa, J. & Sadighi, J. P. Synthesis and reactivity of new copper(i) hydride dimers. Organometallics 35, 613–616 (2016).

    Article  CAS  Google Scholar 

  30. Frey, G. D., Donnadieu, B., Soleilhavoup, M. & Bertrand, G. Synthesis of a room-temperature-stable dimeric copper(i) hydride. Chem. Asian J. 6, 402–405 (2011).

    Article  CAS  Google Scholar 

  31. Romero, E. A. et al. Spectroscopic evidence for a monomeric copper(i) hydride, and crystallographic characterization of a monomeric silver(i) hydride. Angew. Chem. Int. Ed. 56, 4024–4027 (2017).

    Article  CAS  Google Scholar 

  32. Hu, X. B., Soleilhavoup, M., Melaimi, M., Chu, J. X. & Bertrand, G. Air-stable (CAAC)CuCl and (CAAC)CuBH4 complexes as catalysts for hydrolytic dehydrogenation of BH3NH3. Angew. Chem. Int. Ed. 54, 6008–6011 (2015).

    Article  CAS  Google Scholar 

  33. Collins, L. R., Rajabi, N. A., Macgregor, S. A., Mahon, M. F. & Whittlesey, M. K. Experimental and computational studies of the copper borate complexes [(NHC)Cu(HBEt3)] and [(NHC)Cu(HB(C6F5)3]. Angew. Chem. Int. Ed. 55, 15539–15543 (2016).

    Article  CAS  Google Scholar 

  34. Maity, A. & Teets, T. S. Main group Lewis acid-mediated transformations of transition-metal hydride complexes. Chem. Rev. 116, 8873–8911 (2016).

    Article  CAS  Google Scholar 

  35. Jiang, C., Blacque, O., Fox, T. & Berke, H. Heterolytic cleavage of H2 by frustrated B/N Lewis pairs. Organometallics 30, 2117–2124 (2011).

    Article  CAS  Google Scholar 

  36. Mahoney, J. K., Martin, D., Moore, C. E., Rheingold, A. L. & Bertrand, G. Bottleable (amino)(carboxy) radicals derived from cyclic (alkyl)(amino)carbenes. J. Am. Chem. Soc. 135, 18766–18769 (2013).

    Article  CAS  Google Scholar 

  37. Lavallo, V., Canac, Y., Prasang, C., Donnadieu, B. & Bertrand, G. Stable cyclic (alkyl)(amino)carbenes as rigid or flexible, bulky, electron-rich ligands for transition metal catalysts: a quaternary carbon makes the difference! Angew. Chem. Int. Ed. 44, 5705–5709 (2005).

    Article  CAS  Google Scholar 

  38. Tomás-Mendivil, E. et al. Bicyclic (alkyl)(amino)carbenes (BICAACs): stable carbenes more ambiphilic than CAACs. J. Am. Chem. Soc. 139, 7753–7756 (2017).

    Article  Google Scholar 

  39. Geier, S. J., Gille, A. L., Gilbert, T. M. & Stephan, D. W. From classical adducts to frustrated Lewis pairs: steric effects in the interactions of pyridines and B(C6F5)3. Inorg. Chem. 48, 10466–10474 (2009).

    Article  CAS  Google Scholar 

  40. Johnstone, T. C., Wee, G. N. J. H. & Stephan, D. W. Accessing frustrated Lewis pair chemistry from a spectroscopically stable and classical Lewis acid‐base adduct. Angew. Chem. Int. Ed. 57, 5881–5884 (2018).

    Article  CAS  Google Scholar 

  41. Mömming, C. et al. Reversible metal-free carbon dioxide binding by frustrated Lewis pairs. Angew. Chem. Int. Ed. 48, 6643–6646 (2009).

    Article  Google Scholar 

  42. Weinberger, D. S. et al. Isolation of neutral mononuclear copper complexes stabilized by two cyclic (alkyl)(amino)carbenes. J. Am. Chem. Soc. 136, 6235–6238 (2014).

    Article  CAS  Google Scholar 

  43. Santoro, O. et al. A general synthetic route to [Cu(X)(NHC)] (NHC = N-heterocyclic carbene, X = Cl, Br, I) complexes. Chem. Commun. 49, 10483–10485 (2013).

    Article  CAS  Google Scholar 

  44. Jin, L., Romero, E. A., Melaimi, M. & Bertrand, G. The Janus face of the X ligand in the copper-catalyzed azide–alkyne cycloaddition. J. Am. Chem. Soc. 137, 15696–15698 (2015).

    Article  CAS  Google Scholar 

  45. Jazzar, R. et al. Intramolecular “hydroiminiumation” of alkenes: application to the synthesis of conjugate acids of cyclic alkyl amino carbenes (CAACs). Angew. Chem. Int. Ed. Engl. 46, 2899–2902 (2007).

    Article  CAS  Google Scholar 

  46. Berthon-Gelloz, G. et al. IPr* an easily accessible highly hindered N-heterocyclic carbene. Dalton Trans. 39, 1444–1446 (2010).

    Article  CAS  Google Scholar 

  47. Weber, S. G., Loos, C., Rominger, F. & Straub, B. F. Synthesis of an extremely sterically shielding N-heterocyclic carbene ligand. Arkivok iii, 226–242 (2012).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Catalysis Science Program, under award number DE-SC0009376, Solvay and the NNSF of China (numbers 21676134 and 21576129). We gratefully acknowledge support from the US Department of Education for a GAANN fellowship (E.A.R.) and the Japan Society for the Promotion of Science for a Postdoctoral Fellowship for Study Abroad (R.N.).

Author information

Authors and Affiliations

Authors

Contributions

E.A.R., R.N. and R.J. performed the stoichiometric experiments, mechanistic studies and X-ray crystallographic analyses. R.J. and G.B. developed the synergistic mechanism. T.Z. and X.H. performed the catalytic studies. X.H. and Y.W. developed the catalytic conditions for the reduction of CO2 using CAACCuBH4. All authors discussed the results and wrote the paper.

Corresponding authors

Correspondence to Xingbang Hu, Rodolphe Jazzar or Guy Bertrand.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–13, Supplementary Tables 1–4, Supplementary References

Compound 3

Crystallographic data for compound 3

Compound B1

Crystallographic data for compound B1

Compound C1C6F5

Crystallographic data for compound C1C6F5

Compound C3H

Crystallographic data for compound C3H

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero, E.A., Zhao, T., Nakano, R. et al. Tandem copper hydride–Lewis pair catalysed reduction of carbon dioxide into formate with dihydrogen. Nat Catal 1, 743–747 (2018). https://doi.org/10.1038/s41929-018-0140-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-018-0140-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing