Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures


The demonstrations of visible-light-driven chemical transformations on plasmonic metal nanostructures have led to the emergence of a new field in heterogeneous catalysis known as plasmonic catalysis. The excitement surrounding plasmonic catalysis stems from the ability to use the excitation of energetic charge carriers (as opposed to heat) to drive surface chemistry. This offers the opportunity to potentially discover new, more selective reaction pathways that cannot be accessed in temperature-driven catalysis. In this Review, we provide a fundamental overview of plasmonic catalysis with emphasis on recent advancements in the field. It is our objective to stress the importance of the underlying physical mechanisms at play in plasmonic catalysis and discuss possibilities and limitations in the field guided by these physical insights.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Dielectric properties of metals.
Fig. 2: Plasmon decay through electronic excitations.
Fig. 3: Mechanism of plasmon-mediated bond activation and evidence of charge-carrier-mediated reactions.
Fig. 4: Mechanisms of plasmon-mediated energy transfer to reactants.
Fig. 5: Multicomponent plasmonic catalysts.


  1. 1.

    Ertl, G. Reactions at surfaces: from atoms to complexity (Nobel Lecture). Angew. Chem. Int. Ed. 47, 3524–3535 (2008).

    Article  CAS  Google Scholar 

  2. 2.

    Hinrichsen, O., Rosowski, F., Hornung, A., Muhler, M. & Ertl, G. The kinetics of ammonia synthesis over Ru-based catalysts: 1. The dissociative chemisorption and associative desorption of N2. J. Catal. 165, 33–44 (1997).

    Article  CAS  Google Scholar 

  3. 3.

    Haryanto, A., Fernando, S., Murali, N. & Adhikari, S. Current status of hydrogen production techniques by steam reforming of ethanol: a review. Energy Fuels 19, 2098–2106 (2005).

    Article  CAS  Google Scholar 

  4. 4.

    Nikolla, E., Holewinski, A., Schwank, J. & Linic, S. Controlling carbon surface chemistry by alloying: carbon tolerant reforming catalyst. J. Am. Chem. Soc. 128, 11354–11355 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Studt, F. et al. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 320, 1320–1322 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Kliewer, C. J., Bieri, M. & Somorjai, G. A. Hydrogenation of the α,β-unsaturated aldehydes acrolein, crotonaldehyde, and prenal over Pt single crystals: a kinetic and sum-frequency generation vibrational spectroscopy study. J. Am. Chem. Soc. 131, 9958–9966 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Saavedra, J. et al. Controlling activity and selectivity using water in the Au-catalysed preferential oxidation of CO in H2. Nat. Chem. 8, 584–589 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Dellamorte, J. C., Lauterbach, J. & Barteau, M. A. Palladium–silver bimetallic catalysts with improved activity and selectivity for ethylene epoxidation. Appl. Catal. Gen. 391, 281–288 (2011).

    Article  CAS  Google Scholar 

  9. 9.

    Grabow, L. C., Gokhale, A. A., Evans, S. T., Dumesic, J. A. & Mavrikakis, M. Mechanism of the water gas shift reaction on Pt: first principles, experiments, and microkinetic modeling. J. Phys. Chem. C 112, 4608–4617 (2008).

    Article  CAS  Google Scholar 

  10. 10.

    Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Cleve, T. V., Moniri, S., Belok, G., More, K. L. & Linic, S. Nanoscale engineering of efficient oxygen reduction electrocatalysts by tailoring the local chemical environment of Pt surface sites. ACS Catal. 7, 17–24 (2017).

    Article  CAS  Google Scholar 

  12. 12.

    Hu, B. et al. Selective propane dehydrogenation with single-site Coii on SiO2 by a non-redox mechanism. J. Catal. 322, 24–37 (2015).

    Article  CAS  Google Scholar 

  13. 13.

    Christopher, P. & Linic, S. Shape- and size-specific chemistry of Ag nanostructures in catalytic ethylene epoxidation. ChemCatChem 2, 78–83 (2010).

    Article  CAS  Google Scholar 

  14. 14.

    Holewinski, A., Xin, H., Nikolla, E. & Linic, S. Identifying optimal active sites for heterogeneous catalysis by metal alloys based on molecular descriptors and electronic structure engineering. Curr. Opin. Chem. Eng. 2, 312–319 (2013).

    Article  Google Scholar 

  15. 15.

    Schweitzer, N., Xin, H., Nikolla, E., Miller, J. T. & Linic, S. Establishing relationships between the geometric structure and chemical reactivity of alloy catalysts based on their measured electronic structure. Top. Catal. 53, 348–356 (2010).

    Article  CAS  Google Scholar 

  16. 16.

    Lindstrom, C. D. & Zhu, X.-Y. Photoinduced electron transfer at molecule–metal interfaces. Chem. Rev. 106, 4281–4300 (2006). Review paper summarizing mechanisms of electron transfer at molecule–metal interfaces with emphasis on the role of chemical bonding at the interface.

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Frischkorn, C. & Wolf, M. Femtochemistry at metal surfaces: nonadiabatic reaction dynamics. Chem. Rev. 106, 4207–4233 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    White, J. M. Using photons and electrons to drive surface chemical reactions. J. Mol. Catal. Chem. 131, 71–90 (1998).

    Article  CAS  Google Scholar 

  19. 19.

    Busch, D. G. & Ho, W. Direct observation of the crossover from single to multiple excitations in femtosecond surface photochemistry. Phys. Rev. Lett. 77, 1338–1341 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Linic, S., Christopher, P., Xin, H. & Marimuthu, A. Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties. Acc. Chem. Res. 46, 1890–1899 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Buntin, S., Richter, L., Cavanagh, R. & King, D. Optically driven surface reactions: evidence for the role of hot electrons. Phys. Rev. Lett. 61, 1321–1324 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Deliwala, S. et al. Surface femtochemistry of O2 and CO on Pt(111). Chem. Phys. Lett. 242, 617–622 (1995).

    Article  CAS  Google Scholar 

  23. 23.

    Bonn, M. et al. Phonon- versus electron-mediated desorption and oxidation of CO on Ru(0001). Science 285, 1042–1045 (1999). Demonstration of unique chemical reaction outcomes for electron-mediated processes versus phonon-mediated processes on bulk metals under laser excitation.

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Hertel, T., Knoesel, E., Wolf, M. & Ertl, G. Ultrafast electron dynamics at Cu(111): response of an electron gas to optical excitation. Phys. Rev. Lett. 76, 535–538 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Christopher, P., Xin, H. & Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 3, 467–472 (2011). Demonstration of visible-light-enhanced reactions on plasmonic Ag nanostructures with systematic experiments uncovering the role of hot charge carriers in activating chemical bonds .

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Mukherjee, S. et al. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett. 13, 240–247 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Marimuthu, A., Zhang, J. & Linic, S. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science 339, 1590–1593 (2013). A unique case in which plasmon excitation causes a change in the oxidation state of a metal catalyst under operating conditions resulting in a significant improvement of product selectivity.

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Linic, S., Aslam, U., Boerigter, C. & Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 14, 567–576 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Kale, M. J., Avanesian, T. & Christopher, P. Direct photocatalysis by plasmonic nanostructures. ACS Catal. 4, 116–128 (2014).

    Article  CAS  Google Scholar 

  30. 30.

    Zhang, Y. et al. Surface-plasmon-driven hot electron photochemistry. Chem. Rev. 118, 2927–2954 (2018).

    Article  CAS  Google Scholar 

  31. 31.

    Zhang, X., Chen, Y. L., Liu, R.-S. & Tsai, D. P. Plasmonic photocatalysis. Rep. Prog. Phys. 76, 046401 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Maier, S. A. Plasmonics: Fundamentals and Applications (Springer Science and Business Media, Bath, 2007).

  33. 33.

    Kelly, K. L., Coronado, E., Zhao, L. L. & Schatz, G. C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2002).

    Article  CAS  Google Scholar 

  34. 34.

    Link, S. & El-Sayed, M. A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103, 8410–8426 (1999).

    Article  CAS  Google Scholar 

  35. 35.

    El-Sayed, M. A. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 34, 257–264 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Langhammer, C., Kasemo, B. & Zorić, I. Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios. J. Chem. Phys. 126, 194702 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. 37.

    Kreibig, U. & Vollmer, M. Optical Properties of Metal Clusters (Springer Science and Business Media, Heidelberg, 2013). Provides a comprehensive introduction to plasmonic excitation in metal nanoparticles.

  38. 38.

    Stiles, P. L., Dieringer, J. A., Shah, N. C. & Duyne, R. P. V. Surface-enhanced raman spectroscopy. Annu. Rev. Anal. Chem. 1, 601–626 (2008).

    Article  CAS  Google Scholar 

  39. 39.

    Khurgin, J. B. How to deal with the loss in plasmonics and metamaterials. Nat. Nanotech. 10, 2–6 (2015).

    Article  CAS  Google Scholar 

  40. 40.

    Halas, N. J., Lal, S., Chang, W.-S., Link, S. & Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111, 3913–3961 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Hao, E. & Schatz, G. C. Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 120, 357–366 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Ingram, D. B. & Linic, S. Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J. Am. Chem. Soc. 133, 5202–5205 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Linic, S., Christopher, P. & Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911–921 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. 44.

    Kambhampati, P., Child, C. M., Foster, M. C. & Campion, A. On the chemical mechanism of surface enhanced Raman scattering: experiment and theory. J. Chem. Phys. 108, 5013–5026 (1998).

    Article  CAS  Google Scholar 

  45. 45.

    Jain, P. K., Huang, X., El-Sayed, I. H. & El-Sayed, M. A. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41, 1578–1586 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Dolinnyi, A. I. Nanometric rulers based on plasmon coupling in pairs of gold nanoparticles. J. Phys. Chem. C 119, 4990–5001 (2015).

    Article  CAS  Google Scholar 

  47. 47.

    Nasir, M. E., Dickson, W., Wurtz, G. A., Wardley, W. P. & Zayats, A. V. Hydrogen detected by the naked eye: optical hydrogen gas sensors based on core/shell plasmonic nanorod metamaterials. Adv. Mater. 26, 3532–3537 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. 48.

    Carpin, L. B. et al. Immunoconjugated gold nanoshell-mediated photothermal ablation of trastuzumab-resistant breast cancer cells. Breast Cancer Res. Treat. 125, 27–34 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. 49.

    El-Sayed, I. H., Huang, X. & El-Sayed, M. A. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 239, 129–135 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. 50.

    Neumann, O. et al. Nanoparticle-mediated, light-induced phase separations. Nano Lett. 15, 7880–7885 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. 51.

    Brus, L. Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. Acc. Chem. Res. 41, 1742–1749 (2008). Article highlighting strong light–matter interactions among plasmonic nanostructures and molecules.

    Article  CAS  PubMed  Google Scholar 

  52. 52.

    Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783–826 (1985).

    Article  CAS  Google Scholar 

  53. 53.

    Moskovits, M. Surface-enhanced Raman spectroscopy: a brief retrospective. J. Raman Spectrosc. 36, 485–496 (2005).

    Article  CAS  Google Scholar 

  54. 54.

    Kneipp, K. et al. Near-infrared surface-enhanced Raman scattering can detect single molecules and observe ‘hot’ vibrational transitions. J. Raman Spectrosc. 29, 743–747 (1998).

    Article  CAS  Google Scholar 

  55. 55.

    Jiang, Bosnick, K., Maillard, M. & Brus, L. Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. J. Phys. Chem. B 107, 9964–9972 (2003).

    Article  CAS  Google Scholar 

  56. 56.

    Kneipp, K. et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997).

    Article  CAS  Google Scholar 

  57. 57.

    Evanoff, D. D. & Chumanov, G. Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections. J. Phys. Chem. B 108, 13957–13962 (2004).

    Article  CAS  Google Scholar 

  58. 58.

    Jain, P. K., Lee, K. S., El-Sayed, I. H. & El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110, 7238–7248 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. 59.

    Bosbach, J., Hendrich, C., Stietz, F., Vartanyan, T. & Träger, F. Ultrafast dephasing of surface plasmon excitation in silver nanoparticles: influence of particle size, shape, and chemical surrounding. Phys. Rev. Lett. 89, 257404 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. 60.

    Manjavacas, A., Liu, J. G., Kulkarni, V. & Nordlander, P. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 8, 7630–7638 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. 61.

    Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. 62.

    Brown, A. M., Sundararaman, R., Narang, P., Goddard, W. A. & Atwater, H. A. Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry. ACS Nano 10, 957–966 (2016). First-principles calculations of plasmon decay pathways in plasmonic nanostructures with analysis relating the decay pathways to the physical properties of the metals.

    Article  CAS  PubMed  Google Scholar 

  63. 63.

    Bernardi, M., Mustafa, J., Neaton, J. B. & Louie, S. G. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals. Nat. Commun. 6, 7044 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Sundararaman, R., Narang, P., Jermyn, A. S., Goddard Iii, W. A. & Atwater, H. A. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. 5, 5788 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotech. 10, 25–34 (2015).

    Article  CAS  Google Scholar 

  66. 66.

    Knoesel, E., Hotzel, A. & Wolf, M. Ultrafast dynamics of hot electrons and holes in copper: excitation, energy relaxation, and transport effects. Phys. Rev. B 57, 12812–12824 (1998).

    Article  CAS  Google Scholar 

  67. 67.

    Christopher, P., Xin, H., Marimuthu, A. & Linic, S. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nat. Mater. 11, 1044–1050 (2012). Combined experimental and theoretical study uncovering the role of hot carriers in plasmon-driven chemical reactions.

    Article  CAS  PubMed  Google Scholar 

  68. 68.

    Mukherjee, S. et al. Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. J. Am. Chem. Soc. 136, 64–67 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. 69.

    Landry, M. J., Gellé, A., Meng, B. Y., Barrett, C. J. & Moores, A. Surface-plasmon-mediated hydrogenation of carbonyls catalyzed by silver nanocubes under visible light. ACS Catal. 7, 6128–6133 (2017).

    Article  CAS  Google Scholar 

  70. 70.

    Zhu, H., Ke, X., Yang, X., Sarina, S. & Liu, H. Reduction of nitroaromatic compounds on supported gold nanoparticles by visible and ultraviolet light. Angew. Chem. 122, 9851–9855 (2010).

    Article  Google Scholar 

  71. 71.

    Kim, Y., Wilson, A. J. & Jain, P. K. The nature of plasmonically assisted hot-electron transfer in a donor–bridge–acceptor complex. ACS Catal. 7, 4360–4365 (2017).

    Article  CAS  Google Scholar 

  72. 72.

    Huang, Y.-F. et al. Activation of oxygen on gold and silver nanoparticles assisted by surface plasmon resonances. Angew. Chem. Int. Ed. 53, 2353–2357 (2014).

    Article  CAS  Google Scholar 

  73. 73.

    Kim, Y., Dumett Torres, D. & Jain, P. K. Activation energies of plasmonic catalysts. Nano Lett. 16, 3399–3407 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. 74.

    Upadhye, A. A. et al. Plasmon-enhanced reverse water gas shift reaction over oxide supported Au catalysts. Catal. Sci. Technol. 5, 2590–2601 (2015).

    Article  CAS  Google Scholar 

  75. 75.

    Kazuma, E., Jung, J., Ueba, H., Trenary, M. & Kim, Y. Direct pathway to molecular photodissociation on metal surfaces using visible light. J. Am. Chem. Soc. 139, 3115–3121 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. 76.

    Zhang, J. et al. Ag@Au concave cuboctahedra: a unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy. ACS Nano 10, 2607–2616 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. 77.

    Xie, W. & Schlücker, S. Hot electron-induced reduction of small molecules on photorecycling metal surfaces. Nat. Commun. 6, 7570 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Zhang, X. et al. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nat. Commun. 8, 14542 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Ageev, V. N. Desorption induced by electronic transitions. Prog. Surf. Sci. 47, 55–203 (1994).

    Article  CAS  Google Scholar 

  80. 80.

    Misewich, J. A., Heinz, T. F. & Newns, D. M. Desorption induced by multiple electronic transitions. Phys. Rev. Lett. 68, 3737–3740 (1992).

    Article  CAS  PubMed  Google Scholar 

  81. 81.

    Shirhatti, P. R. et al. Observation of the adsorption and desorption of vibrationally excited molecules on a metal surface. Nat. Chem. 10, 592–598 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. 82.

    Kale, M. J., Avanesian, T., Xin, H., Yan, J. & Christopher, P. Controlling catalytic selectivity on metal nanoparticles by direct photoexcitation of adsorbate–metal bonds. Nano Lett. 14, 5405–5412 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. 83.

    Boerigter, C., Campana, R., Morabito, M. & Linic, S. Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis. Nat. Commun. 7, 10545 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Palmer, R. E. & Rous, P. J. Resonances in electron scattering by molecules on surfaces. Rev. Mod. Phys. 64, 383–440 (1992).

    Article  CAS  Google Scholar 

  85. 85.

    Yan, J., Jacobsen, K. W. & Thygesen, K. S. First-principles study of surface plasmons on Ag(111) and H/Ag(111). Phys. Rev. B 84, 235430 (2011).

    Article  CAS  Google Scholar 

  86. 86.

    Boerigter, C., Aslam, U. & Linic, S. Mechanism of charge transfer from plasmonic nanostructures to chemically attached materials. ACS Nano 10, 6108–6115 (2016). Mechanistic study and analysis of energy transfer from plasmonic metals to molecules demonstrating the dominant role of the direct energy transfer mechanism.

    Article  CAS  PubMed  Google Scholar 

  87. 87.

    Browne, W. R. & McGarvey, J. J. The Raman effect and its application to electronic spectroscopies in metal-centered species: techniques and investigations in ground and excited states. Coord. Chem. Rev. 251, 454–473 (2007).

    Article  CAS  Google Scholar 

  88. 88.

    Wu, K., Chen, J., McBride, J. R. & Lian, T. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 349, 632–635 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. 89.

    Tan, S. et al. Plasmonic coupling at a metal/semiconductor interface. Nat. Photon. 11, 806–812 (2017).

    Article  CAS  Google Scholar 

  90. 90.

    Kazuma, E., Jung, J., Ueba, H., Trenary, M. & Kim, Y. Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule. Science 360, 521–526 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. 91.

    DuChene, J. S., Tagliabue, G., Welch, A. J., Cheng, W.-H. & Atwater, H. A. Hot hole collection and photoelectrochemical CO2 reduction with plasmonic Au/p-GaN photocathodes. Nano Lett. 18, 2545–2550 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. 92.

    Bauer, C., Abid, J.-P., Fermin, D. & Girault, H. H. Ultrafast chemical interface scattering as an additional decay channel for nascent nonthermal electrons in small metal nanoparticles. J. Chem. Phys. 120, 9302–9315 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. 93.

    Hendrich, C. et al. Chemical interface damping of surface plasmon excitation in metal nanoparticles: a study by persistent spectral hole burning. Appl. Phys. B 76, 869–875 (2003).

    Article  CAS  Google Scholar 

  94. 94.

    Foerster, B. et al. Chemical interface damping depends on electrons reaching the surface. ACS Nano 11, 2886–2893 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. 95.

    Linnert, T., Mulvaney, P. & Henglein, A. Surface chemistry of colloidal silver: surface plasmon damping by chemisorbed iodide, hydrosulfide (SH), and phenylthiolate. J. Phys. Chem. 97, 679–682 (1993).

    Article  CAS  Google Scholar 

  96. 96.

    Aslam, U., Chavez, S. & Linic, S. Controlling energy flow in multimetallic nanostructures for plasmonic catalysis. Nat. Nanotech. 12, 1000–1005 (2017). Systematic study illuminating the mechanism of energy transfer from plasmonic metals to catalytic metals.

    Article  CAS  Google Scholar 

  97. 97.

    Swearer, D. F. et al. Heterometallic antenna–reactor complexes for photocatalysis. Proc. Natl Acad. Sci. USA 113, 8916–8920 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. 98.

    Zhang, C. et al. Al–Pd nanodisk heterodimers as antenna–reactor photocatalysts. Nano Lett. 16, 6677–6682 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. 99.

    Mukherjee, J. & Linic, S. First-principles investigations of electrochemical oxidation of hydrogen at solid oxide fuel cell operating conditions. J. Electrochem. Soc. 154, B919–B924 (2007).

    Article  CAS  Google Scholar 

  100. 100.

    Ingram, D. B. & Linic, S. First-principles analysis of the activity of transition and noble metals in the direct utilization of hydrocarbon fuels at solid oxide fuel cell operating conditions. J. Electrochem. Soc. 156, B1457–B1465 (2009).

    Article  CAS  Google Scholar 

Download references


The work presented in this document was supported by the National Science Foundation (NSF) (CBET-1702471 and CHE- 1800197) (optical analysis) and Office of Basic Energy Science, Division of Chemical Sciences (FG-02-05ER15686) (materials synthesis). Secondary support for the development of analytical tools used to analyse the reaction kinetics was provided by the NSF (CBET-1436056). S.L. also acknowledges the partial support of the Technische Universität München – Institute for Advanced Study, funded by the German Excellence Initiative and the European Union Seventh Framework Programme under grant agreement no. 291763.

Author information



Corresponding author

Correspondence to Suljo Linic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Additional information

Reprints and permissions information is available at

Correspondence should be addressed to S.L.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aslam, U., Rao, V.G., Chavez, S. et al. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat Catal 1, 656–665 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing