Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles

Abstract

Although one-step-excitation overall water splitting on a particulate photocatalyst is a simple means of performing scalable solar-to-hydrogen energy conversion, there is a lack of photocatalysts with significant activity under visible light. Despite its superior visible-light absorption, the Ta3N5 photocatalyst has not accomplished overall water splitting due to strong charge recombination at defects. Here, we show rapid growth of Ta3N5 nanorods on lattice-matched cubic KTaO3 particles through the volatilization of potassium species during a brief nitridation process. The Ta3N5 nanorods generated selectively on the edge of KTaO3 are spatially separated and well-defined single crystals free from grain boundaries. When combined with the Rh/Cr2O3 co-catalyst, the single-crystal Ta3N5 nanorods split water into hydrogen and oxygen very efficiently under visible light and simulated sunlight. Our findings demonstrate the importance of nanostructured single-crystal photocatalysts free from structural defects in solar water splitting.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Morphology and UV-Vis DRS analysis of Ta3N5/KTaO3.
Fig. 2: Single-crystal structure of Ta3N5 nanorods grown on KTaO3.
Fig. 3: Selective photodeposition of rhodium metal particles on Ta3N5 nanorods.
Fig. 4: Effect of the nitridation time and co-catalyst loading amount on the overall-water-splitting activity of Rh/Cr2O3-modified Ta3N5/KTaO3.
Fig. 5: Overall-water-splitting performance and AQE of Rh/Cr2O3-modified Ta3N5/KTaO3.

References

  1. 1.

    Lewis, N. S. Toward cost-effective solar energy use. Science 315, 798–801 (2007).

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Chen, X., Shen, S., Guo, L. & Mao, S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010).

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Hisatomi, T., Kubota, J. & Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43, 7520–7535 (2014).

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Wang, Q. et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 15, 611–615 (2016).

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Grätzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).

    Article  PubMed  Google Scholar 

  6. 6.

    Verlage, E. et al. A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem III−V light absorbers protected by amorphous TiO2 films. Energy Environ. Sci. 8, 3166–3172 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    May, M. M., Lewerenz, H. J., Lackner, D., Dimroth, F. & Hannappel, T. Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure. Nat. Commun. 6, 8286 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Pinaud, B. A. et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 6, 1983–2002 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    Fabian, D. M. et al. Particle suspension reactors and materials for solar-driven water splitting. Energy Environ. Sci. 8, 2825–2850 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    Maeda, K. et al. Photocatalyst releasing hydrogen from water. Nature 440, 295 (2006).

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Pan, C. et al. A complex perovskite-type oxynitride: the first photocatalyst for water splitting operable at up to 600 nm. Angew. Chem. Int. Ed. 54, 2955–2959 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    Goto, Y. et al. A particulate photocatalyst water-splitting panel for large-scale solar hydrogen generation. Joule 2, 509–520 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    Chiang, T. et al. Efficient photocatalytic water splitting using Al-doped SrTiO3 coloaded with molybdenum oxide and rhodium-chromium oxide. ACS Catal. 8, 2782–2788 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    Kudo, A. & Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009).

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Zhang, G., Lan, Z., Lin, L., Lin, S. & Wang, X. Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents. Chem. Sci. 7, 3062–3065 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Jo, W. J. et al. Phase transition-induced band edge engineering of BiVO4 to split pure water under visible light. Proc. Natl Acad. Sci. USA 112, 13774–13778 (2015).

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Tanaka, A., Teramura, K., Hosokawa, S., Kominami, H. & Tanaka, T. Visible light-induced water splitting in an aqueous suspension of a plasmonic Au/TiO2 photocatalyst with metal co-catalysts. Chem. Sci. 8, 2574–2580 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Hitoki, G. et al. Ta3N5 as a novel visible light-driven photocatalyst (λ < 600 nm). Chem. Lett. 31, 736–737 (2002).

    Article  Google Scholar 

  19. 19.

    Ma, S., Hisatomi, T., Maeda, K., Moriya, Y. & Domen, K. Enhanced water oxidation on Ta3N5 photocatalysts by modification with alkaline metal salts. J. Am. Chem. Soc. 134, 19993–19996 (2012).

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Chen, S. et al. Interface engineering of a CoOx/Ta3N5 photocatalyst for unprecedented water oxidation performance under visible-light-irradiation. Angew. Chem. Int. Ed. 54, 3047–3051 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    Hou, J. et al. In situ phase-induced spatial charge separation in core–shell oxynitride nanocube heterojunctions realizing robust solar water splitting. Adv. Energy Mater. 7, 1700171 (2017).

    Article  CAS  Google Scholar 

  22. 22.

    Qi, Y. et al. Achievement of visible-light-driven Z-scheme overall water splitting using barium-modified Ta3N5 as a H2-evolving photocatalyst. Chem. Sci. 8, 437–443 (2017).

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Li, Y. et al. Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency. Nat. Commun. 4, 2566 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Li, M. et al. A cocatalyst-loaded Ta3N5 photoanode with a high solar photocurrent for water splitting upon facile removal of the surface layer. Angew. Chem. Int. Ed. 52, 1–6 (2013).

    CAS  Article  Google Scholar 

  25. 25.

    Liu, G. et al. Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting. Energy Environ. Sci. 9, 1327–1334 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    Zhong, M. et al. Highly active GaN-stabilized Ta3N5 thin-film photoanode for solar water oxidation. Angew. Chem. Int. Ed. 56, 4739–4743 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    Nurlaela, E., Ziani, A. & Takanabe, K. Tantalum nitride for photocatalytic water splitting: concept and applications. Mater. Renew. Sustain. Energy 5, 18 (2016).

    Article  Google Scholar 

  28. 28.

    Maeda, K. et al. Noble-metal/Cr2O3 core/shell nanoparticles as a cocatalyst for photocatalytic overall water splitting. Angew. Chem. Int. Ed. 45, 7806–7809 (2006).

    CAS  Article  Google Scholar 

  29. 29.

    Teramura, K. et al. In situ time-resolved energy-dispersive XAFS study on photodeposition of Rh particles on a TiO2 photocatalyst. J. Phys. Chem. C 112, 8495–8498 (2008).

    CAS  Article  Google Scholar 

  30. 30.

    Li, R. et al. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nat. Commun. 4, 1432 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Chen, X., Li, C., Grätzel, M., Kosteckid, R. & Mao, S. S. Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 41, 7909–7937 (2012).

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Osterloh, F. E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42, 2294–2320 (2013).

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Wang, L. et al. Tantalum nitride nanorod arrays: introducing Ni–Fe layered double hydroxides as a cocatalyst strongly stabilizing photoanodes in water splitting. Chem. Mater. 27, 2360–2366 (2015).

    CAS  Article  Google Scholar 

  34. 34.

    Pinaud, B. A., Vesborg, P. C. K. & Jaramillo, T. F. Effect of film morphology and thickness on charge transport in Ta3N5/Ta photoanodes for solar water splitting. J. Phys. Chem. C 116, 15918–15924 (2012).

    CAS  Article  Google Scholar 

  35. 35.

    Hajibabaei, H., Zandi, O. & Hamann, T. W. Tantalum nitride films integrated with transparent conductive oxide substrates via atomic layer deposition for photoelectrochemical water splitting. Chem. Sci. 7, 6760–6767 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Chen, S., Takata, T. & Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2, 17050 (2017).

    CAS  Article  Google Scholar 

  37. 37.

    Wang, J., Feng, J., Zhang, L., Li, Z. & Zou, Z. Role of oxygen impurity on the mechanical stability and atomic cohesion of Ta3N5 semiconductor photocatalyst. Phys. Chem. Chem. Phys. 16, 15375–15380 (2014).

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Xie, Y., Wang, Y., Chen, Z. & Xu, X. Role of oxygen defects on the photocatalytic properties of Mg-doped mesoporous Ta3N5. ChemSusChem 9, 1403–1412 (2016).

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Kato, H. & Kudo, A. Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3 (A = Li, Na, and K). J. Phys. Chem. B 105, 4285–4292 (2001).

    CAS  Article  Google Scholar 

  40. 40.

    Maeda, K. et al. Preparation of core-shell-structured nanoparticles (with a noble-metal or metal oxide core and a chromia shell) and their application in water splitting by means of visible light. Chem. Eur. J. 16, 7750–7759 (2010).

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Momma, K., & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Artificial Photosynthesis Project of the New Energy and Industrial Technology Development Organization and Grants-in-Aid for Scientific Research (A) (number 16H02417), Scientific Research (C) (number 16K06862) and Young Scientists (A) (number 15H05494) from the Japan Society for the Promotion of Science.

Author information

Affiliations

Authors

Contributions

Z.W., Y.Inoue and K.D. conceived the material growth design. Z.W. fabricated the photocatalyst materials, and conducted the XRD, UV-Vis DRS and SEM characterizations, co-catalyst modifications and overall-water-splitting reactions. R.I., N.S. and Y.Ikuhara carried out the ADF-STEM and STEM-EDS measurements. Q.W. conducted the AQE and STH measurements. Y.Inoue, T.H., T.T. and K.D. supervised the research work. Z.W., Y.Inoue, T.H., Q.W., T.T., S.C. and K.D. contributed to valuable discussion. Z.W., Y.Inoue, T.H. and K.D. wrote and revised the paper. All authors commented on the paper.

Corresponding author

Correspondence to Kazunari Domen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 & 2; Supplementary Figures 1–12; Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Inoue, Y., Hisatomi, T. et al. Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles. Nat Catal 1, 756–763 (2018). https://doi.org/10.1038/s41929-018-0134-1

Download citation

Further reading