Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metabolic engineering of Escherichia coli for secretory production of free haem

Abstract

Haem has widespread applications in healthcare and food supplement industries. Escherichia coli has previously been engineered to produce a small amount of haem intracellularly through the C4 pathway, requiring extraction for applications. Here we report secretory production of free haem by engineered E. coli strains, using the C5 pathway and the optimized downstream pathway for haem biosynthesis. Furthermore, knocking out ldhA, pta and also yfeX—encoding a putative haem-degrading enzyme—results in 7.88 mg l1 of total haem with 1.26 mg l−1 of extracellular haem in flask cultivation. Fed-batch fermentations of the engineered strain overexpressing a haem exporter CcmABC from glucose only and glucose supplemented with l-glutamate secrete 73.4 and 151.4 mg l−1 of haem, respectively, which are 63.5% of 115.5 mg l−1 and 63.3% of 239.2 mg l1 of total haem produced. The engineered E. coli strain reported here will be useful for microbial production of free haem.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Haem biosynthetic pathways examined for secretory production of free haem.
Fig. 2: The scheme of engineering strategies to optimize haem production in E. coli.
Fig. 3: Flask cultivation results of the recombinant E. coli strains producing haem.
Fig. 4: Averaged batch fermentation profile of the strain HAEM6.
Fig. 5: Averaged fed-batch fermentation profiles of the strain HAEM6.
Fig. 6: Averaged fed-batch fermentation profiles of the strain HAEM7.

Similar content being viewed by others

References

  1. Ponka, P. Cell biology of heme. Am. J. Med. Sci. 318, 241–256 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Poulos, T. L. Heme enzyme structure and function. Chem. Rev. 114, 3919–3962 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mayfield, J. A., Dehner, C. A. & DuBois, J. L. Recent advances in bacterial heme protein biochemistry. Curr. Opin. Chem. Biol. 15, 260–266 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hoppe, M., Brun, B., Larsson, M. P., Moraeus, L. & Hulthen, L. Heme iron-based dietary intervention for improvement of iron status in young women. Nutrition 29, 89–95 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Seligman, P. A., Moore, G. M. & Schleicher, R. B. Clinical studies of HIP: an oral heme-iron product. Nutr. Res. 20, 1279–1286 (2000).

    Article  CAS  Google Scholar 

  6. Anderson, K. E. & Collins, S. D. Hemin treatment for acute porphyria: implications for clinical practice of an open-label study of 130 patients. J. Investig. Med. 54, S290 (2006).

    Google Scholar 

  7. Fischer, H. & Zeile, K. Synthese des haematoporphyrins, protoporphyrins und haemins. Eur. J. Org. Chem. 468, 98–116 (1929).

    CAS  Google Scholar 

  8. Espinas, N. A., Kobayashi, K., Takahashi, S., Mochizuki, N. & Masuda, T. Evaluation of unbound free heme in plant cells by differential acetone extraction. Plant Cell Physiol. 53, 1344–1354 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. In, M. J., Kim, D. C., Chae, H. J. & Oh, N. S. Effects of degree of hydrolysis and pH on the solubility of heme-iron enriched peptide in hemoglobin hydrolysate. Biosci., Biotechnol., Biochem. 67, 365–367 (2003).

    Article  CAS  Google Scholar 

  10. Kwon, S. J., de Boer, A. L., Petri, R. & Schmidt-Dannert, C. High-level production of porphyrins in metabolically engineered Escherichia coli: systematic extension of a pathway assembled from overexpressed genes involved in heme biosynthesis. Appl. Environ. Microbiol. 69, 4875–4883 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kwon, O. H., Kim, S., Hahm, D. H., Lee, S. Y. & Kim, P. Potential application of the recombinant Escherichia coli-synthesized heme as a bioavailable iron source. J. Microbiol. Biotechnol. 19, 604–609 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Lee, M. J. et al. Effect of gene amplifications in porphyrin pathway on heme biosynthesis in a recombinant Escherichia coli. J. Microbiol. Biotechnol. 23, 668–673 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Pranawidjaja, S., Choi, S. I., Lay, B. W. & Kim, P. Analysis of heme biosynthetic pathways in a recombinant Escherichia coli. J. Microbiol. Biotechnol. 25, 880–886 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Fraser, R., Davis, S.C. & Brown, P.O. Secretion of heme-containing polypeptides. US Patent Application No. 15/021,447 (2016).

  15. Andersen, H.D., Jensen, E.B. & Welinder, K.G. A process for producing heme proteins. European Patent Application No. 0505311A2 PCT/DK1993/000094 (1997).

  16. Anzaldi, L. L. & Skaar, E. P. Overcoming the heme paradox: heme toxicity and tolerance in bacterial pathogens. Infect. Immun. 78, 4977–4989 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Feissner, R. E., Richard-Fogal, C. L., Frawley, E. R. & Kranz, R. G. ABC transporter-mediated release of a haem chaperone allows cytochrome c biogenesis. Mol. Microbiol. 61, 219–231 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Layer, G., Reichelt, J., Jahn, D. & Heinz, D. W. Structure and function of enzymes in heme biosynthesis. Protein Sci. 19, 1137–1161 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dailey, H. A. et al. Prokaryotic heme biosynthesis: multiple pathways to a common essential product. Microbiol. Mol. Biol. Rev. 81, e00048–00016 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kang, Z. et al. Recent advances in production of 5-aminolevulinic acid using biological strategies. World J. Microbiol. Biotechnol. 33, 200 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Ferreira, G. C. & Gong, J. 5-Aminolevulinate synthase and the first step of heme-biosynthesis. J. Bioenerg. Biomembr. 27, 151–159 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Lin, J. P., Fu, W. Q. & Cen, P. L. Characterization of 5-aminolevulinate synthase from Agrobacterium radiobacter, screening new inhibitors for 5-aminolevulinate dehydratase from Escherichia coli and their potential use for high 5-aminolevulinate production. Bioresour. Technol. 100, 2293–2297 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Chung, S. Y., Seo, K. H. & Rhee, J. I. Influence of culture conditions on the production of extra-cellular 5-aminolevulinic acid (ALA) by recombinant E. coli. Process Biochem. 40, 385–394 (2005).

    Article  CAS  Google Scholar 

  24. Ding, W., Weng, H., Du, G., Chen, J. & Kang, Z. 5-Aminolevulinic acid production from inexpensive glucose by engineering the C4 pathway in Escherichia coli. J. Ind. Microbiol. Biotechnol. 44, 1127–1135 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Kang, Z., Wang, Y., Gu, P., Wang, Q. & Qi, Q. Engineering Escherichia coli for efficient production of 5-aminolevulinic acid from glucose. Metab. Eng. 13, 492–498 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, L. Y., Wilson, S. & Elliott, T. A mutant HemA protein with positive charge close to the N terminus is stabilized against heme-regulated proteolysis in Salmonella typhimurium. J. Bacteriol. 181, 6033–6041 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, J., Kang, Z., Chen, J. & Du, G. Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli. Sci. Rep. 5, 8584 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, F. et al. Constitutive expression of RyhB regulates the heme biosynthesis pathway and increases the 5-aminolevulinic acid accumulation in Escherichia coli. FEMS Microbiol. Lett. 350, 209–215 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Vuoristo, K. S. et al. Metabolic engineering of the mixed-acid fermentation pathway of Escherichia coli for anaerobic production of glutamate and itaconate. AMB Express 5, 61 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Letoffe, S., Heuck, G., Delepelaire, P., Lange, N. & Wandersman, C. Bacteria capture iron from heme by keeping tetrapyrrol skeleton intact. Proc. Natl Acad. Sci. USA 106, 11719–11724 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dailey, H. A. et al. The Escherichia coli protein YfeX functions as a porphyrinogen oxidase, not a heme dechelatase. MBio 2, e00248–00211 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Turlin, E. et al. Protoporphyrin (PPIX) efflux by the MacAB-TolC pump in Escherichia coli. MicrobiologyOpen 3, 849–859 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Suzuki, T., Yamane, T. & Shimizu, S. Phenomenological background and some preliminary trials of automated substrate supply in pH-stat modal fed-batch culture using a setpoint of high limit. J. Ferment. Bioeng. 69, 292–297 (1990).

    Article  CAS  Google Scholar 

  34. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–U341 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim, J. M., Lee, K. H. & Lee, S. Y. Development of a markerless gene knock-out system for Mannheimia succiniciproducens using a temperature-sensitive plasmid. FEMS Microbiol. Lett. 278, 78–85 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Palmeros, B. et al. A family of removable cassettes designed to obtain antibiotic-resistance-free genomic modifications of Escherichia coli and other bacteria. Gene 247, 255–264 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Burnham, B. F. δ-Aminolevulinic acid synthase (Rhodopseudomonas spheroides). Methods Enzymol. 17, 195–200 (1970).

    Article  Google Scholar 

  39. Orth, J. D. et al. A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011. Mol. Syst. Biol. 7, 535 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ebrahim, A., Lerman, J. A., Palsson, B. O. & Hyduke, D. R. COBRApy: COnstraints-Based Reconstruction and Analysis for Python. BMC Syst. Biol. 7, 74 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Won Jun Kim for discussion. This work was supported by the Technology Development Program to Solve Climate Changes on Systems Metabolic Engineering for Biorefineries (NRF-2012M1A2A2026556 and NRF-2012M1A2A2026557) from the Ministry of Science and ICT, through the National Research Foundation (NRF) of Korea.

Author information

Authors and Affiliations

Authors

Contributions

X.R.Z. and S.Y.L. designed the project. X.R.Z. and K.R.C. performed the experiments and analysed the data. X.R.Z., K.R.C. and S.Y.L. wrote the manuscript together.

Corresponding author

Correspondence to Sang Yup Lee.

Ethics declarations

Competing interests

The authors declare competing financial interests as a patent (Korean Patent Application No. 10-2017-0170185) of commercial interest entitled “Method for Producing Exracellular Haem Using Metabolically Engineered Microorganism” is filed on this technology by Korea Advanced Institute of Science and Technology. S.Y.L., X.R.Z. and K.R.C. are the inventors of this patent that covers the construction and fermentation of mircroorganisms capable of secretory production of haem reported in this manuscript.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–6, Supplementary Figures 1–17, Supplementary Tables 1–3, Supplementary References

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X.R., Choi, K.R. & Lee, S.Y. Metabolic engineering of Escherichia coli for secretory production of free haem. Nat Catal 1, 720–728 (2018). https://doi.org/10.1038/s41929-018-0126-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-018-0126-1

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research