Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Selective and synergistic cobalt(iii)-catalysed three-component C–H bond addition to dienes and aldehydes


Two-component C–H bond additions to a large variety of coupling partners have been developed with applications towards materials, natural product and drug synthesis. Sequential three-component C–H bond addition across two different coupling partners potentially enables the convergent synthesis of complex molecular scaffolds from simple precursors. Here, we report three-component Co(iii)-catalysed C–H bond additions to dienes and aldehydes that proceed with high regio- and stereoselectivity, resulting in two new carbon–carbon σ-bonds and four to six new stereocentres. The reaction relies on the synergistic reactivity of the diene and aldehyde, with neither undergoing C–H bond addition alone. A detailed mechanism is supported by X-ray structural characterization of a Co(iii)-allyl intermediate, observed transfer of stereochemical information, and kinetic isotope studies. The applicability of the method to biologically relevant molecules is exemplified by the rapid synthesis of the western fragment of the complex ionophore antibiotic lasalocid A.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Three-component strategy for the rapid assembly of complex structures.
Fig. 2: C–H functionalization with benzamide 1a, butadiene 2a and diverse aldehydes 3.
Fig. 3: C–H functionalization with dienes and aldehydes.
Fig. 4: Mechanistic experiments.
Fig. 5: Proposed mechanism for the three-component transformation.
Fig. 6: Synthesis of the core scaffold in lasalocid A.


  1. Dömling, A. & Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed. 39, 3168–3210 (2000).

    Article  Google Scholar 

  2. Ramón, D. J. & Yus, M. Asymmetric multicomponent reactions (AMCRs): the new frontier. Angew. Chem. Int. Ed. 44, 1602–1634 (2005).

    Article  CAS  Google Scholar 

  3. D’Souza, D. M. & Müller, T. J. J. Multi-component syntheses of heterocycles by transition-metal catalysis. Chem. Soc. Rev. 36, 1095–1108 (2007).

    Article  PubMed  Google Scholar 

  4. Ye, J. & Lautens, M. Palladium-catalysed norbornene-mediated C–H functionalization of arenes. Nat. Chem. 7, 863–870 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Davies, H. M. L. & Manning, J. R. Catalytic C–H bond functionalization by metal carbenoid and nitrenoid insertion. Nature 451, 417–424 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yamaguchi, J., Yamaguchi, A. D. & Itami, K. C–H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed. 51, 8960–9009 (2012).

    Article  CAS  Google Scholar 

  7. Wencel-Delord, J. & Glorius, F. C–H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat. Chem. 5, 369–375 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Yoshino, T. & Matsunaga, S. (Pentamethylcyclopentadienyl)cobalt(iii)-catalyzed C–H bond functionalization: from discovery to unique reactivity and selectivity. Adv. Synth. Catal. 359, 1245–1262 (2017).

    Article  CAS  Google Scholar 

  9. Crabtree, R. H. & Lei, A. Introduction: CH activation. Chem. Rev. 117, 8481–9520 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Blakemore, D. C. et al. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 10, 383–394 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Boerth, J. A. & Ellman, J. A. A convergent synthesis of functionalized alkenyl halides through cobalt(iii)-catalyzed three-component C–H bond addition. Angew. Chem. Int. Ed. 56, 9976–9980 (2017).

    Article  CAS  Google Scholar 

  12. Boerth, J. A., Hummel, J. R. & Ellman, J. A. Highly stereoselective cobalt(iii)-catalyzed three-component C−H bond addition cascade. Angew. Chem. Int. Ed. 55, 12650–12654 (2016).

    Article  CAS  Google Scholar 

  13. Allen, A. E. & MacMillan, D. W. C. Synergistic catalysis: a powerful synthetic strategy for new reaction development. Chem. Sci. 3, 633–658 (2012).

    Article  CAS  Google Scholar 

  14. Montgomery, J. Nickel-catalyzed reductive cyclizations and couplings. Angew. Chem. Int. Ed. 43, 3890–3908 (2004).

    Article  CAS  Google Scholar 

  15. Yang, Y., Perry, I. B., Lu, G., Liu, P. & Buchwald, S. L. Copper-catalyzed asymmetric addition of olefin-derived nucleophiles to ketones. Science 353, 144–150 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zbieg, J. R., Yamaguchi, E., McInturff, E. L. & Krische, M. J. Enantioselective C–H crotylation of primary alcohols via hydrohydroxyalkylation of butadiene. Science 336, 324–327 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cho, H. Y. & Morken, J. P. Diastereoselective construction of functionalized homoallylic alcohols by Ni-catalyzed diboron-promoted coupling of dienes and aldehydes. J. Am. Chem. Soc. 130, 16140–16141 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hummel, J. R. & Ellman, J. A. Cobalt(iii)-catalyzed synthesis of indazoles and furans by C–H bond functionalization/addition/cyclization cascades. J. Am. Chem. Soc. 137, 490–498 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Yoshino, T., Ikemoto, H., Matsunaga, S. & Kanai, M. A cationic high-valent Cp*CoIII complex for the catalytic generation of nucleophilic organometallic species: directed C–H bond activation. Angew. Chem. Int. Ed. 52, 2207–2211 (2013).

    Article  CAS  Google Scholar 

  20. Vitaku, E., Smith, D. T. & Njardson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Schneider, N., Lowe, D. M., Sayle, R. A., Tarselli, M. A. & Landrum, G. A. Big data from pharmaceutical patents: a computational analysis of medicinal chemists’ bread and butter. J. Med. Chem. 59, 4385–4402 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Nahm, S. & Weinreb, S. M. N-methoxy-N-methylamides as effective acylating agents. Tetrahedr. Lett. 22, 3815–3818 (1981).

    Article  CAS  Google Scholar 

  23. Li, H. et al. Pyridinyl directed alkenylation with olefins via Rh(iii)-catalyzed C–C bond cleavage of secondary arylmethanols. J. Am. Chem. Soc. 133, 15244–15247 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Ozkal, E., Cacherat, B. & Morandi, B. Cobalt(iii)-catalyzed functionalization of unstrained carbon–carbon bonds through β-carbon cleavage of alcohols. ACS Catal. 5, 6458–6462 (2015).

    Article  CAS  Google Scholar 

  25. Sen, M., Rajesh, N., Emayavaramban, B., Premkumar, J. R. & Sundararaju, B. Isolation of Cp*CoIII–alkenyl intermediate in efficient cobalt-catalyzed C−H alkenylation with alkynes. Chem. Eur. J. 24, 342–346 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Simmons, E. M. & Hartwig, J. F. On the interpretation of deuterium kinetic isotope effects in C–H bond functionalizations by transition-metal complexes. Angew. Chem. Int. Ed. 51, 3066–3072 (2012).

    Article  CAS  Google Scholar 

  27. Korkis, S. E., Burns, D. J. & Lam, H. W. Rhodium-catalyzed oxidative C−H allylation of benzamides with 1,3-dienes by allyl-to-allyl 1,4-Rh(iii) migration. J. Am. Chem. Soc. 138, 12252–12257 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Hirano, M., Shibasaki, T., Komiya, S. & Bennett, M. A. Synthesis of and stereospecific hydride migration in cationic (tricyclic arene)(cyclooctadiene)ruthenium(ii) complexes. Organometallics 21, 5738–5745 (2002).

    Article  CAS  Google Scholar 

  29. Nakata, T. et al. A total synthesis of lasalocid A. J. Am. Chem. Soc. 100, 2933–2935 (1978).

    Article  CAS  Google Scholar 

  30. Ireland, R. E. et al. The total synthesis of ionophore antibiotics. A convergent synthesis of lasalocid A (X537A). J. Am. Chem. Soc. 105, 1988–2006 (1983).

    Article  CAS  Google Scholar 

  31. Sajiki, H., Hattori, K. & Hirota, K. The formation of a novel Pd/C-ethylenediamine complex catalyst: chemoselective hydrogenation without deprotection of the O-benzyl and N-Cbz groups. J. Org. Chem. 63, 7990–7992 (1998).

    Article  CAS  Google Scholar 

  32. White, E. H. The chemistry of the N-alkyl-N-nitrosoamides. I. Methods of preparation. J. Am. Chem. Soc. 77, 6008–6010 (1955).

    Article  CAS  Google Scholar 

Download references


This work was supported by the NIH (R35GM122473).

Author information

Authors and Affiliations



J.A.B. co-conceived the concept and developed the reaction conditions. J.A.B. also completed the scope with respect to C–H bond substrates, including the lasalocid A derivative, conducted the mechanistic experiments and co-prepared the manuscript. S.M. helped with the development of the reaction conditions and completed the scope with respect to both aldehyde and diene coupling partners. S.M. also helped with the preparation of the manuscript. S.K.W. helped with the completion of the scope with respect to C–H bond substrates. B.Q.M. solved the X-ray crystal structures of compounds 4b, 4ar′ and 8a. J.A.E. co-conceived the concept and co-prepared the manuscript with feedback from J.A.B. and S.M.

Corresponding author

Correspondence to Jonathan A. Ellman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–5, Supplementary Tables 1 & 2, Supplementary References

Supplementary Information

Crystallographic data for compound 4b, CCDC reference 1812525

Supplementary Information

Crystallographic data for compound 4ar’, CCDC reference 1826301

Supplementary Information

Crystallographic data for compound 8a, CCDC reference 1812526

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boerth, J.A., Maity, S., Williams, S.K. et al. Selective and synergistic cobalt(iii)-catalysed three-component C–H bond addition to dienes and aldehydes. Nat Catal 1, 673–679 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing