Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Extending the limits of Pt/C catalysts with passivation-gas-incorporated atomic layer deposition

Abstract

Controlling the morphology of noble metal nanoparticles during surface depositions is strongly influenced by precursor–substrate and precursor–deposit interactions. Depositions can be improved through a variety of means, including tailoring the surface energy of a substrate to improve precursor wettability, or by modifying the surface energy of the deposits themselves. Here, we show that carbon monoxide can be used as a passivation gas during atomic layer deposition to modify the surface energy of already deposited Pt nanoparticles to assist direct deposition onto a carbon catalyst support. The passivation process promotes two-dimensional growth leading to Pt nanoparticles with suppressed thicknesses and a more than 40% improvement in Pt surface-to-volume ratio. This approach to synthesizing nanoparticulate Pt/C catalysts achieved high Pt mass activities for the oxygen reduction reaction, along with excellent stability likely facilitated by strong catalyst–support interactions afforded by this synthetic technique.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pt nanoparticle growth with ALD and PALD.
Fig. 2: Comparing ORR activities of PALD and ALD Pt nanoparticles.
Fig. 3: Morphological difference between best-performing ALD and PALD Pt nanoparticles.
Fig. 4: Activity and stability of Pt/C catalysts synthesized with PALD.

Similar content being viewed by others

References

  1. Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Kongkanand, A. & Mathias, M. F. The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. J. Phys. Chem. Lett. 7, 1127–1137 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Shao, M., Peles, A. & Shoemaker, K. Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity. Nano Lett. 11, 3714–3719 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Nesselberger, M. et al. The particle size effect on the oxygen reduction reaction activity of pt catalysts: influence of electrolyte and relation to single crystal models. J. Am. Chem. Soc. 133, 17428–17433 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Perez-Alonso, F. J. et al. The effect of size on the oxygen electroreduction activity of mass-selected platinum nanoparticles. Angew. Chem. Int. Ed. 51, 4641–4643 (2012).

    Article  CAS  Google Scholar 

  6. Zhang, J., Yang, H., Fang, J. & Zou, S. Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra. Nano Lett. 10, 638–644 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, J. X. et al. Oxygen reduction on well-defined core-shell nanocatalysts: particle size, facet, and Pt shell thickness effects. J. Am. Chem. Soc. 131, 17298–17302 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Stephens, I. E. L., Bondarenko, A. S., Grønbjerg, U., Rossmeisl, J. & Chorkendorff, I. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 5, 6744 (2012).

    Article  CAS  Google Scholar 

  9. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  CAS  Google Scholar 

  10. Li, M. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354, 1414–1419 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Jiang, K. et al. Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires. Sci. Adv. 3, e1601705 (2017).

  12. Higgins, D. C. et al. Morphology and composition controlled platinum-cobalt alloy nanowires prepared by electrospinning as oxygen reduction catalyst. Nano Energy 10, 135–143 (2014).

    Article  CAS  Google Scholar 

  13. Chen, C. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, L. et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 349, 412–416 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Duan, H. et al. Ultrathin rhodium nanosheets. Nat. Commun. 5, 3093 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, J. X. et al. Kirkendall effect and lattice contraction in nanocatalysts: a new strategy to enhance sustainable activity. J. Am. Chem. Soc. 133, 13551–13557 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Adzic, R. R. et al. Platinum monolayer fuel cell electrocatalysts. Top. Catal. 46, 249–262 (2007).

    Article  CAS  Google Scholar 

  18. Herrero, E., Buller, L. J. & Abruña, H. D. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev. 101, 1897–1930 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, J. X. et al. Oxygen reduction on well-defined core-shell nanocatalysts: Particle size, facet, and Pt shell thickness effects. J. Am. Chem. Soc. 131, 17299–17302 (2009).

    Google Scholar 

  20. Zhang, Y. et al. High performance Pt monolayer catalysts produced via core-catalyzed coating in ethanol. ACS Catal. 4, 738–742 (2014).

    Article  CAS  Google Scholar 

  21. Zhang, J. et al. Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. J. Phys. Chem. B 108, 10955–10964 (2004).

    Article  CAS  Google Scholar 

  22. Sasaki, K. et al. Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. Angew. Chem. Int. Ed. 49, 8602–8607 (2010).

    Article  CAS  Google Scholar 

  23. Okada, T. Theory for water management in membranes for polymer electrolyte fuel cells. Part 2. The effect of impurity ions at the cathode side on the membrane performances. J. Electroanal. Chem. 465, 18–29 (1999).

    Article  CAS  Google Scholar 

  24. Singh, J. A., Yang, N. & Bent, S. F. Nanoengineering heterogeneous catalysts by atomic layer deposition. Annu. Rev. Chem. Biomol. Eng. 8, 41–62 (2017).

    Article  PubMed  Google Scholar 

  25. O’Neill, B. J. et al. Catalyst design with atomic layer deposition. ACS Catal. 5, 1804–1825 (2015).

    Article  CAS  Google Scholar 

  26. Lu, J. et al. Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition. Science 335, 1205–1208 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Cheng, N. et al. High stability and activity of Pt electrocatalyst on atomic layer deposited metal oxide/nitrogen-doped graphene hybrid support. Int. J. Hydrog. Energy 39, 15967–15974 (2014).

    Article  CAS  Google Scholar 

  28. Chen, Y. et al. Atomic layer deposition assisted Pt-SnO2 hybrid catalysts on nitrogen-doped CNTs with enhanced electrocatalytic activities for low temperature fuel cells. Int. J. Hydrog. Energy 36, 11085–11092 (2011).

    Article  CAS  Google Scholar 

  29. Cheng, N. et al. Extremely stable platinum nanoparticles encapsulated in a zirconia nanocage by area-selective atomic layer deposition for the oxygen reduction reaction. Adv. Mater. 27, 277–281 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Du, Q., Wu, J. & Yang, H. Pt@Nb-TiO2 catalyst membranes fabricated by electrospinning and atomic layer deposition. ACS Catal. 4, 144–151 (2014).

    Article  CAS  Google Scholar 

  31. Inaba, M., Suzuki, T., Hatanaka, T. & Morimoto, Y. Fabrication and cell analysis of a Pt/SiO2 platinum thin film electrode. J. Electrochem. Soc. 162, F634–F638 (2015).

    Article  CAS  Google Scholar 

  32. Wang, H. et al. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 354, 1031–1036 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Cheng, N. et al. Atomic scale enhancement of metal–support interactions between Pt and ZrC for highly stable electrocatalysts. Energy Environ. Sci. 8, 1450–1455 (2015).

    Article  CAS  Google Scholar 

  34. Xie, J., Yang, X., Han, B., Shao-Horn, Y. & Wang, D. Site-selective deposition of twinned platinum nanoparticles on TiSi2 nanonets by atomic layer deposition and their oxygen reduction activities. ACS Nano 7, 6337–6345 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Shao, M., Chang, Q., Dodelet, J.-P. & Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116, 3594–3657 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Liao, W. & Ekerdt, J. G. Effect of CO on Ru nucleation and ultra-smooth thin film growth by chemical vapor deposition at low temperature. Chem. Mater. 25, 1793–1799 (2013).

    Article  CAS  Google Scholar 

  37. Babar, S. et al. Growth inhibitor to homogenize nucleation and obtain smooth HfB2 thin films by chemical vapor deposition. Chem. Mater. 25, 662–667 (2013).

    Article  CAS  Google Scholar 

  38. Liu, Y., Gokcen, D., Bertocci, U. & Moffat, T. P. Self-terminating growth of platinum films by electrochemical deposition. Science 338, 1327–1330 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Nutariya, J., Fayette, M., Dimitrov, N. & Vasiljevic, N. Growth of Pt by surface limited redox replacement of underpotentially deposited hydrogen. Electrochim. Acta 112, 813–823 (2013).

    Article  CAS  Google Scholar 

  40. Wang, H., Jiang, K., Chen, Q., Xie, Z. & Cai, W.-B. Carbon monoxide mediated chemical deposition of Pt or Pd quasi-monolayer on Au surfaces with superior electrocatalysis for ethanol oxidation in alkaline media. Chem. Commun. 52, 374–377 (2016).

    Article  CAS  Google Scholar 

  41. Brimaud, S. & Behm, R. J. Electrodeposition of a Pt monolayer film: using kinetic limitations for atomic layer epitaxy. J. Am. Chem. Soc. 135, 11716–11719 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Novak, S., Lee, B., Yang, X. & Misra, V. Platinum nanoparticles grown by atomic layer deposition for charge storage memory applications. J. Electrochem. Soc. 157, H589 (2010).

    Article  CAS  Google Scholar 

  43. Baker, L. et al. Growth of continuous and ultrathin platinum films on tungsten adhesion layers using atomic layer deposition techniques. Appl. Phys. Lett. 101, 111601 (2012).

    Article  CAS  Google Scholar 

  44. Puurunen, R. L. & Vandervorst, W. Island growth as a growth mode in atomic layer deposition: a phenomenological model. J. Appl. Phys. 96, 7686–7695 (2004).

    Article  CAS  Google Scholar 

  45. Lee, H. B. R. & Bent, S. F. Formation of continuous Pt films on the graphite surface by atomic layer deposition with reactive O3. Chem. Mater. 27, 6802–6809 (2015).

    Article  CAS  Google Scholar 

  46. Xu, S. et al. Building upon the Koutecky-Levich equation for evaluation of next-generation oxygen reduction reaction catalysts. Electrochim. Acta 255, 99–108 (2017).

    Article  CAS  Google Scholar 

  47. Dendooven, J. et al. Independent tuning of size and coverage of supported Pt nanoparticles using atomic layer deposition. Nat. Commun. 8, 1074 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bosch, R. H. E. C., Bloksma, F. L., Huijs, J. M. M., Verheijen, M. A. & Kessels, W. M. M. Surface infrared spectroscopy during low temperature growth of supported Pt nanoparticles by atomic layer deposition. J. Phys. Chem. C 120, 750–755 (2016).

    Article  CAS  Google Scholar 

  49. Hoye, R. L. Z. et al. Research update: atmospheric pressure spatial atomic layer deposition of ZnO thin films: reactors, doping, and devices. APL Mater. 3, 40701 (2015).

    Article  CAS  Google Scholar 

  50. Longrie, D., Deduytsche, D., & Detavernier, C. Reactor concepts for atomic layer deposition on agitated particles: a review. J. Vac. Sci. Technol. A 32, 10802 (2014).

    Article  CAS  Google Scholar 

  51. Aaltonen, T., Ritala, M., Sajavaara, T., Keinonen, J. & Leskelä, M. Atomic layer deposition of platinum thin films. Chem. Mater. 15, 1924–1928 (2003).

    Article  CAS  Google Scholar 

  52. Dendooven, J. et al. Low-temperature atomic layer deposition of platinum using (methylcyclopentadienyl)trimethylplatinum and ozone. J. Phys. Chem. C 117, 20557–20561 (2013).

    Article  CAS  Google Scholar 

  53. Setthapun, W. et al. Genesis and evolution of surface species during Pt atomic layer deposition on oxide supports characterized by in situ XAFS analysis and water−gas shift reaction. J. Phys. Chem. C 114, 9758–9771 (2010).

    Article  CAS  Google Scholar 

  54. MacKus, A. J. M., Garcia-Alonso, D., Knoops, H. C. M., Bol, A. A. & Kessels, W. M. M. Room-temperature atomic layer deposition of platinum. Chem. Mater. 25, 1769–1774 (2013).

    Article  CAS  Google Scholar 

  55. Hämäläinen, J., Puukilainen, E., Sajavaara, T., Ritala, M. & Leskelä, M. Low temperature atomic layer deposition of noble metals using ozone and molecular hydrogen as reactants. Thin Solid Films 531, 243–250 (2013).

    Article  CAS  Google Scholar 

  56. Rupprechter, G., Dellwig, T., Unterhalt, H. & Freund, H. J. High-pressure carbon monoxide adsorption on Pt(111) revisited: a sum frequency generation study. J. Phys. Chem. B 105, 3797–3802 (2001).

    Article  CAS  Google Scholar 

  57. Steininger, H., Lehwald, S. & Ibach, H. On the adsorption of CO on Pt(111). Surf. Sci. 123, 264–282 (1982).

    Article  CAS  Google Scholar 

  58. Primet, M., Basset, J. M., Mathieu, M. V. & Prettre, M. Infrared study of CO adsorbed on Pt Al2O3. A method for determining metal-adsorbate interactions. J. Catal. 29, 213–223 (1973).

    Article  CAS  Google Scholar 

  59. Shinozaki, K., Zack, J. W., Pylypenko, S., Pivovar, B. S. & Kocha, S. S. Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique: II. Influence of ink formulation, catalyst layer uniformity and thickness. J. Electrochem. Soc. 162, F1384–F1396 (2015).

    Article  CAS  Google Scholar 

  60. Malis, T., Cheng, S. C. & Egerton, R. F. EELS log-ratio technique for specimen-thickness measurement in the TEM. J. Electron Microsc. Tech. 8, 193–200 (1988).

    Article  CAS  PubMed  Google Scholar 

  61. Liu, H.-C., Osborne, J. R., Osborn, M. & Dahlen, G. A. Advanced CD-AFM probe tip shape characterization for metrology accuracy and throughput. In Proc. SPIE (ed. Archie, C. N.) 65183K (2007).

  62. Villarrubia, J. S. Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation. J. Res. Natl Inst. Stand. Technol. 102, 425 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Qian, X. & Villarrubia, J. S. General three-dimensional image simulation and surface reconstruction in scanning probe microscopy using a dexel representation. Ultramicroscopy 108, 29–42 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the Volkswagen Group of America. Part of this work was performed at the Stanford Nano Shared Facilities (SNSF), supported by the National Science Foundation under award ECCS-1542152. S.X. thanks support from and discussions with L. Johal, G. Li, Z. Lu and Y. Liu. D.H. acknowledges support from the Banting Postdoctoral Fellowship, administered by the government of Canada. J.T. acknowledges funding from the Austrian Science Fund (FWF) under contract J3505-N20. P.S. acknowledges financial support from the Austrian Science Fund (FWF) under contract J3980-N27.

Author information

Authors and Affiliations

Authors

Contributions

S.X. conceived the PALD process and conducted the initial feasibility tests with P.S., D.T., J.Pr. and J.T. under the supervision of F.B.P.; S.X., Y.K. and D.H. tested catalytic performance of PALD-deposited Pt under the supervision of F.B.P. and T.F.J.; S.X., J.Pa., D.T., S.S. and B.H.L. performed material characterizations and analysed the data; S.X., D.H., M.O., J.Pr., Y.K., T.G., T.D.S., T.F.J. and F.B.P. wrote the manuscript.

Corresponding author

Correspondence to Fritz B. Prinz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–14, Supplementary Tables 1–4, Supplementary References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Kim, Y., Park, J. et al. Extending the limits of Pt/C catalysts with passivation-gas-incorporated atomic layer deposition. Nat Catal 1, 624–630 (2018). https://doi.org/10.1038/s41929-018-0118-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-018-0118-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing